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Abstract 
 
Resource allocation in device-to-device (D2D) aided cellular systems, in which the 
proximity users are allowed to communicate directly with each other without relying on the 
intervention of base stations (BSs), is investigated in this paper. A new uplink resource 
allocation policy is proposed by exploiting the relationship between D2D-access probability 
and channel gain among variant devices, such as cellular user equipments (CUEs), D2D user 
equipments (DUEs) and BSs, etc., under the constraints of their minimum signal to 
interference-plus-noise ratio (SINR) requirements. Furthermore, the proposed 
resource-allocation problem can be formulated as the cost function of “maximizing the 
number of simultaneously activated D2D pairs subject to the SINR constraints at both CUEs 
and DUEs”. Numerical results relying on system-level simulations show that the proposed 
scheme is capable of substantially improving both the D2D-access probability and the 
network throughput without sacrificing the performance of conventional CUEs. 
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1. Introduction 

With the rapid development of wireless communication techniques as well as the rapid 
popularity of smart terminals (e.g. ipad and iphone), the existing cellular networks are 
becoming increasingly difficult to meet the customers’ exponentially growing traffic 
demands [1]-[3].Therefore, both wireless spectrum efficiency and network capacity need to 
be substantially enhanced [4]–[6]. Meanwhile, the base stations (BSs) may often operate at 
an overloaded state due to the existing BS-centric architecture of wireless access networks 
(WANs), consequently resulting in a serious load imbalance over the whole network. 

Device-to-Device (D2D) communication technology, which allows proximity users to 
exchange data directly without relying on the intervention of BSs [7], has been regarded as 
one of the effective ways for improving system performance [8]-[10] by addressing the 
above-mentioned issues mainly based on the following benefits. On the one hand, employing 
"proximity communication" is capable of offering a higher channel quality for 
proximity-communication peers, corresponding to attaining a higher channel capacity [11], 
[12] as well as a lower power consumption [13], [14]. On the other hand, a much lower delay 
than in conventional cellular communications can be guaranteed by enabling direct 
transmissions between proximity peers [15]. Furthermore, through reusing the licensed 
spectrum of conventional cellular user equipments (CUEs), the spectral efficiency of 
wireless networks can be substantially improved by activating D2D links [16]-[18].  

However, activating the D2D links may impose a severe interference on the conventional 
CUEs, thus significantly eroding the performance of the latter [19]-[21]. To achieve a better 
overall system performance while guaranteeing the minimum Quality of Service (QoS) 
requirement of CUEs, an appropriate interference management technique (e.g., in terms of 
resource allocation, mode selection and power control, etc) must be implemented in the 
activated D2D user equipments (DUEs). 

Up to now, interference-management technologies for D2D aided cellular systems have 
been widely studied in both academy and industry [22],[23]. To coordinate the interference 
among CUEs and DUEs, the authors in [24] derived the optimal power allocation for 
optimizing the sum data rate relying on power control schemes for different modes. Subject 
to a sum data rate constraint, a distributed power control algorithm relying on small-scale 
path losses has been proposed in [25] for minimizing the overall power consumption. 
Furthermore, a resource allocation scheme, in which the local awareness of the interference 
between CUEs and DUEs can be generated at the BSs, is proposed for minimizing the 
interference imposed on the CUEs [26]. In order to better exploit the advantages of both 
resource allocation and power control techniques, a joint resource allocation and power 
control scheme has been proposed in [27] for maximizing the energy-efficiency (EE) of D2D 
aided underlaying cellular networks. In addition, a scheme by jointly considering mode 
selection, channel assignment and power control simultaneously in D2D communications 
has been proposed in [28] for optimizing the overall system throughput while guaranteeing 
the minimum signal to interference-plus-noise ratio (SINR) of both CUEs and DUEs. 

In this paper, resource allocation in D2D aided cellular systems is investigated. A 
heuristic resource allocation algorithm is proposed for maximizing the number of 
simultaneously activated D2D pairs. Unlike [29], in the proposed system model, we assume 
that there exists an interference limited area (ILA) either for BSs or for D2D receivers, inside 
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which the licensed spectrum is prohibited to be reused by DUEs. Furthermore, we 
investigate the relationship between D2D-access ratio and channel gain among variant 
devices, such as CUEs, DUEs and BSs. Meanwhile, we use the singleton maximization 
model to analyze the global maximization under the constrains of both SINR and ILA. 

The remainder of this paper is organized as follows. Section 2 gives out the system model. 
The proposed resource allocation strategy is discussed in Section 3, followed by evaluating 
the performance of the proposed algorithm using simulations in Section 4. Finally, Section 5 
concludes this paper.  

2. System Model 
In this section, system model for the proposed D2D aided cellular networks is analyzed, 
followed by analyzing the SINR of wireless links. After that, a new framework for resource 
allocation in the proposed system is given out. 

2.1 System Model for D2D Aided Cellular Networks  
In this paper, without loss of generality, a single cell is considered, and licensed spectrum 
allocated to CUEs is allowed to be fully reused by D2D pairs, as illustrated in Fig. 1. 
Meanwhile, multiple D2D pairs are allowed to reuse the licensed spectrum of any individual 
CUE. However, an orthogonal spectrum is assumed to be allocated to an adjacent cell in 
order to avoid the inter-cell interference. Furthermore, uplink resource sharing is considered 
in the proposed system model, in which the D2D-induced interference is mainly imposed on 
BSs and the geographically close-by D2D receivers. 

 
Fig. 1. System model for D2D aided cellular networks, in which multiple D2D pairs are permitted to 

reuse the licensed spectrum allocated to an individual CUE, where iC  and ,j tD  ( ,k tD ), ,j rD  

( ,k rD ), ( )1, ci N∈ , ( )1, dj N∈ , denote CUE and D2D transmitter, D2D receiver, respectively. 

A fully-loaded spectrum allocation scenario is considered, in which all the spectrum 
resources are assumed to be allocated to the CUEs (i.e. there exists no spare spectrum). To 
mitigate the D2D-induced interference inside a given cellular coverage, a circle guard zone, 
namely the ILA, is pre-set for both BSs and D2D receivers, inside which area the licensed 
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spectrum is prohibited to be reused by D2D transmitters. Before one D2D pair accessing the 
network, the BS must detect the distance between D2D transimitter and BS. After that, the 
BS will inform the D2D receivers the objective CUE's location, relying on which the D2D 
pair can decide whether to reuse the licensed resource or not. In the following, the radius of 
the ILA is denoted by d. Without loss of generality, all UEs are assumed to be uniformly 
distributed over the whole cellular coverage. Furthermore, similar to the CUEs, the DUEs 
also have their own minimum QoS requirements. 

2.2 SINR Analysis for Cellular and D2D links 
In this paper, without loss of generality, a typical Urban Micro (UMi) scenario is considered 
for modeling the proposed system. The performance erosion is assumed to be induced 
mainly by the impact of propagation and shadowing effects of wireless channels. Meanwhile, 
both the antenna gains of devices (i.e. including both BSs and CUEs/DUEs) and the feeder 
loss are taken into account. For convenience, we use { }1,2,..., cC N= and 

{ }1,2,..., dD N= to denote the index sets of active CUEs and candidate D2D pairs, 

respectively, with cN and dN denoting the maximum number of CUEs and candidate D2D 
pairs, respectively. Furthermore, i Dφ ⊆ is used to denote the set of admitted D2D pairs (i.e. 
the activated DUE pairs), which will reuse the spectrum allocated to the i -th CUE. In 
addition, parameters iC  and jD  are used to denote the i -th CUE and j -th D2D pair, 
respectively. 

The received SINR of the typical CUE-BS (i.e., iC -BS) and D2D (i.e., jD ) links can be 
respectively represented as 
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where c
iγ denotes the SINR of iC -BS link, d

jγ denotes the SINR of D2D link jD , 0P stand 

for the transmit power of users. Furthermore, ,i Bg denotes the channel gain between iC and 

the corresponding BS, and ,j Bg denotes the channel gain between the j -th D2D transmitter 

and the associated BS. Thus, jg can be used to denote the corresponding channel gain of 

jD , with ,i jg standing for the channel gain between iC  and the j -th D2D receiver. In 

addition, 0 ,
i

j B
j

P g
φ∈
∑  is used to represent the interference power imposed on BS by jD , and 

0 , 0 ,
\i

k j i j
k j

P g P g
φ∈

+∑ denotes the sum interference power imposed on jD  induced by iC and 

other D2D pairs. Finally, 0N is used to denote the power spectrum density of thermal noise. 
The sum throughput of the proposed D2D aided cellular systems can thus be expressed as 
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2.3 Formulating the Proposed Resource Allocation Problem 
It has been proven that the system performance in terms of sum throughput can be 
substantially improved by activating appropriate D2D links [23]. In the system model 
considering fully spectrum loaded scenario, the licensed spectrum allocated to any individual 
CUE is allowed to be reused by more than one D2D pair. For convenience of analysis, we 
can form a frequency reuse set comprising the objective CUE and its co-spectrum DUEs, 
provided that the minimum QoS (or in other words, minimum SINR) requirement of each 
user in this set can be guaranteed. Based on the above-mentioned principle, a 
resource-allocation framework can thus be formulated as: 
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where iφ  represents the set of admitted D2D pairs reusing the spectrum of iC , and min
cγ  

and min
dγ  stand for the minimum SINR requirement of iC and jD , respectively. We also 

use ,j Bd  to denote the distance between j -th D2D transmitter and BS, and use ,t jd  to 
denote the distance between interference transmitter (i.e. CUE or other D2D transmitter) and 
j -th D2D receiver. Furthermore, (3c) ensures that any D2D pair is permitted to reuse the 

spectrum of one and only one CUE. In addition, (3d) is used to limit the D2D-induced 
interference imposed on both BSs and D2D receivers (i.e. corresponding to formulating the 
function of ILA). 

3. Resource Allocation Strategy For D2D Aided Cellular Systems 
It is shown that the activated D2D links may impose a severe interference on the CUEs [23], 
and, the interference induced by either CUEs or the geographically close-by D2D 
transmitters may also significantly erode the quality of a given activated D2D link. To 
mitigate the D2D-induced interference, an appropriate resource allocation scheme, which is 
capable of balancing the probability of D2D access and the sum throughput of the whole 
system, should be implemented. 

In this section, a resource allocation strategy aiming at maximizing the number of 
simultaneously activated D2D pairs while satisfying the minimum QoS requirements of all 
users (i.e. comprising both CUEs and DUEs) is proposed. According to (3a), and (3b), the 
maximum number of simultaneously activated D2D pairs can be expressed as 
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where c
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Therefore, we can get the maximum- iφ  as 

  

,1 min
min

min
max

,2 min
min

min

, ,

, .

c
i B

d
ji

c
i B

d
j

g
g

g
g

g
g

φ
g
g


Φ ≤
= 
Φ >

                          (6) 

From (6), we can readily prove that , min
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above-mentioned conclusion can  be extended to arbitrary iC , jD  and 
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From the above-mentioned analysis, the optimal constraints for improving the sum 
throughput of the proposed D2D aided cellular systems under the criteria (7) of maximizing 
the activated D2D pairs can be derived as follows. 
Obviously, the sum throughput cR in the traditional cellular network (i.e. without 
considering D2D communications) can be expressed as 
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As compared to (8), the throughput gain brought about by employing D2D mode can be 
expressed as 
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with m denoting the size of spectrum reuse set, as derived in Appendix. For conventional 
cellular systems, as a benchmark, it is easy to derive sum cR R= . However, for D2D aided 

cellular networks, it is shown that sum cR R>  can be met if 
i

c d c
i j i

j φ
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+ >∑  is satisfied. 

Furthermore, the performance gain in terms of SINR can be expressed as 
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Combine (7) and (15), the reuse restrictions can be expressed as 
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Note that the proposed resource-allocation problem can be readily formulated as a 
Maximum Independent Set Problem (MISP) for each CUE, where the D2D pairs (denoted by 
D ) and the spectrum reuse relationship among different D2D pairs are denoted by the point 
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set V  and edge set E of an undirected graph ( ),G V E= , respectively. Since iφ  denotes 

a complete graph, while iφ  represents the number of points belonging to the complete graph, 
our task becomes “finding the iφ  with max- iφ  value in G  so as to maximize the number 
of simultaneously activated D2D pairs associated with each CUE (i.e. that reuse the licensed 
spectrum allocated to that CUE)”. Therefore, (3) can be presented as 
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We use the following Fig. 2 to represent the feasible domain, in which we can perform 

resource reuse. Note that the size between the points is uncertain, like 
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maximum value of the slope between the point ( , )x y and min 0

0

0,
c N
P

γ 
 
 

 ( or 

min 0

0

0,
d N
P

γ 
 
 

 ) in feasible domain. 

Relying on the formulated MISP, a greedy heuristic algorithm is also proposed for 
solving the proposed resource-allocation problem, as elaborated on in Algorithm 1, in which 
the complexity is ( )c dN NΟ . 
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Fig. 2. the possible feasible domain of CUE and DUE 

 
 

Furthermore, the detailed reuse procedure between D2D pairs and CUE can be expressed 
as follows: 

① D2D pairs want to aeccss the network. 
② The BS chooses the D2D pair according to the session initiation time. If the time is 

consistent, BS selects the D2D pair according to the distance between D2D peers. 
③ BS selects CUE according to the signal strength of CUE. 
④ BS calculates whether D2D pair and CUE satisfy equations (17a)-(17d). 
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⑤ If equations (17a)-(17d) are satisfied, BS will send UL grant to D2D pair to start 
session, followed by picking other D2D pairs, and then repeat ①-⑤. 

⑥ otherwise, repeat ①-⑤. 

4. Numerical Analysis 
In this section, numerical analysis relying on the proposed channel model is performed for 
exploring the attainable benefits brought about by employing the proposed algorithm. The 
objective functions of the proposed optimization is set to be the D2D access ratio (i.e. 
represented as the number of simultaneously activated D2D pairs to the total number of 
users), the sum throughput gain over the conventional cellular systems, and D2D link’s 
average throughput parameterized by the increase of CUE-SINR threshold min

cη γ=  and 
ILA radius d . 
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Fig. 3. The simulation is a wrap-around configuration of 19 sites, each comprising 3 cells, inside 

which the users are distributed uniformly over the whole area. 

In the following, similar to [30], a wrap-around system configuration comprising 19 sites 
(i.e. each comprising 3 cells), with inter-site distance of 1000m, is considered, as depicted in 
Fig. 3. Without loss of generality, the minimum UE-to-BS distance is assumed to be 10m, 
and the maximum distance between a pair of D2D peers is 50m. Furthermore, orthogonal 
spectrum allocation among CUEs is performed. In addition, the transmit power of BS and 
CUEs assumed to be 42dBm and 24dBm, respectively. Finally, the noise power spectrum 
density is assumed to be 174 /dBm Hz− . The detailed parameter settings, which come from 
the standard ITU-R M.2135[30], are elaborated on in Table 1. 
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Table 1. Parameter settings of the proposed system-level simulation. 
Parameters Settings 

scenario environment UMi 
system bandwidth 10MHz (TDD) 
carrier frequency 2.5 GHz 

Inter-site distance (ISD) 1000m 

the deployment of Macro BS 
typical system layout of 19 sites, each 
comprising 3 cells with six resolvable 
angles 

the min-distance of UE to BS 10m 

Antenna model of Macro BS 

( )

( )

( ) ( )( ){ }

2

3

2

3

3

min 12 ,

min(12 , )

min ,

20 , 70, 15,
180 180, 90 90

m

tilt
e m

m

m tilt

A A

A A

A A A

A dB
e

θθ
θ

φ φ
φ

φ

θ φ

θ φ
θ φ

  
 = −  
   

 −
= −  

 

= − − +

= = =
− ≤ ≤ − ≤ ≤

 

Antenna model of UE Omnidirectional 
traffic pattern full buffer 

BS height 10m 
UE height 1.5m 

BS Noise Figure 5 dB 
UE Noise Figure 7 dB 

BS transmit power 42 dBm 
UE transmit power 24 dBm 

Power level of thermal noise -174 dBm/Hz 
 

4.1 Channel Model for System-Level Simulations 
The Spatial Channel Model (SCM), which is a typical double directional geometry-based 
stochastic model [30], is adopted in this section. The path loss model of BS-to-UE links is 
given by ITU-R M.2135 standard, whereas the path loss model of UE-to-UE links has been 
defined in 3rd Generation Partnership Project (3GPP) specification 36.843-c01[31][32]. 
Furthermore, two propagation scenarios, including Line of Sight (LOS) and Non Line Of 
Sight (NLOS) for outdoor users in UMi, are considered. Note that the LOS probability can 
be parameterized as a function of distance l: 

18min 1 exp exp .
36 36LOS

l lP
l

 −  −     = − +            
                (18) 

Similarly, the UE-to-UE path loss can be expressed as 
( ), ,max , ,L L free L bP P P=                        (19) 

and 
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( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )( )

( )( ) ( )

,

,

,

,

20.0 log 46.4 20.0 log , ,

22.7 log 27.0 20.0 log , & 10,4.0 ,

40.0 log 7.56 17.3log 17.3log 2.7 log ,

& 0,10 , 4.0 , ,

44.9 6.55log log 1

L free c

L b c bs ms c

L b bs ms

bs ms c

L b BS

P l f if free space

P l f if LOS l h h f

P l h h fc

if LOS l h h f

P h l

= + + −

= + + ∈

= + − − +

∈ ∞

= − + ( ) ( )8.38 5.83log 23.0 log ,

,
BS ch f

if NLOS










+ +



  (20) 

where l  denotes the average distance between a pair of D2D peers, cf  stands for the 
center frequency, BSh and MSh represent the actual antenna height and the effective 
environmental height, respectively. Furthermore, we have 1.0bs BSh h= − and 

1.0ms MSh h= − . 
Apart from it, shadowing effect is assumed to follow a log-normal distribution, as 

expressed as 

10
, 10 ,

n SH

SF n

γ δ

δ =                              (21) 

where nγ  is a Gaussian random variable, and SHδ  denotes the shadow fading standard 
deviation in dB. Meanwhile, the antenna model is given by Table 1. The channel gain can 
thus be expressed as 

( ),
1.0 ,i j

L F i j

g
P S A A feederloss

=
− − − +

                (22) 

where LP  denotes the path loss exponential, FS  represents the shadowing effect, iA  and 

jA  are the antenna gains of signal transmitter and signal receiver, respectively, and 
feederloss is set to be 20dB. 

4.2 Simulation Results 
In this subsection, the performance comparison between the greedy resource allocation 
algorithm (GRA) and without the greedy resource allocation algorithm in terms of D2D 
access probability is performed, where the throughput gain of the latter is evaluated subject 
to the SINR constraints of both CUEs and DUEs. 

In Fig. 4, the performance of GRA and without GRA in terms of the maximum number of 
simultaneously activated D2D pairs is performed by considering variantη values, with a 
single CUE considered. It is shown that the number of simultaneously activated D2D pairs 
decreases asη  increases, because the interference tolerance of CUE decreases as the SINR 
threshold increases, thus requiring fewer D2D pairs to be activated simultaneously so as to 
impose a lower interference on CUE (i.e. to guarantee the minimum SINR requirement of 
the CUE). Anyway, the proposed algorithm is shown to always outperform the without GRA 
in terms of the maximum number of simultaneously activated D2D pairs, because the former 
is capable of coordinating the interference between CUEs and D2D pairs and optimizing the 
spectrum reuse set adaptively according to the instantaneous channel condition. 

In Fig. 5, the impacts of ILA radius and CUE-SINR threshold on the number of 
simultaneously activated D2D pairs in a single-cellular scenario is investigated. It is shown 
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that the access probability of the proposed algorithm is a monotonically decreasing function 
of η , because the interference tolerance of DUEs decreases as η  increases. Meanwhile, it 
is also shown that the performance of GRA increases first, and then decreases as d  
increases. We can explain this observation as follows: when ILA radius is small, the 
interference imposed on signal receiver from one interference transmitter is more intensive 
compared with signal receiver power when the distance of interference link is smaller than 
D2D links. But when ILA radius is beyond the distance of D2D links, the probability of 
candidate D2D pairs access to net-work declines with the increase of d , as a result, the 
number of admitted D2D pairs decreases. 
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Fig. 4. Performance comparison of the greedy allocation algorithm and the without greedy allocation 

scheme in terms of the maximum number of simultaneously activated D2D pairs for variant SINR 
thresholds, with a single CUE considered, where 50cN = , 300dN = and 50d = . 

Fig. 6 demonstrates the impact of ILA on the throughput as a function of η . Evidently, 
the throughput is a monotonically decreasing function of η , because the number of 
simultaneously activated D2D pairs decreases as the SINR threshold increases. Meanwhile, 
the performance of the GRA is also shown to increase firstly, and then decreases as d  
increases. We can explain it as follows: Since the interference is much more intensive when 

50d <  (i.e. the maximum allowable distance of D2D links) compared with receiver signal 
power, fewer D2D pairs can access the network under the requirement of “guaranteeing the 
required ILA radius, if it is beyond the distance of D2D links”. Consequently, the sum 
throughput decreases. 

In Fig. 7, the impact of CUE-SINR threshold as a function of d  on the D2D throughput 
is evaluated. It is shown that the performance is a concave function of d . We can explain 
this observation as follows: Increasing the ILA radius implies increasing the distance 
between the interference transmitters and signal receivers, and the interference imposed on 
D2D receivers by CUEs as well as that imposed on CUEs by D2D pairs will both decrease. 
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However, setting a larger inter-user distance will always reduce the access probability of 
DUEs. Consequently, as ILA radius increases, the relatively lower interference level will 
result in an increase in sum throughput in the fist place, and then the lower access probability 
of DUEs will lead to a reduction in the sum throughput. It is also shown that the performance 
of the proposed algorithm declines as η  increases, making this degradation rate become 
slower as η  becomes larger, because a higher SINR threshold corresponds to a lower 
interference tolerance. 
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Fig. 5. The maximum number of simultaneously activated D2D pairs in the proposed greedy 

allocation algorithm system under different settings of SINR threshold, with a BS, where 50cN = ; 

300dN = . 

5. Conclusion 
In this paper, the problem of adaptive spectrum allocation was formulated as the 
maximization of the number of simultaneously activated D2D pairs in scenario of D2D 
reusing the uplink licensed spectrum, with a fully loaded cellular system considered. To 
maximize the number of simultaneously activated D2D pairs without eroding the SINRs of 
both CUEs and DUEs, a greedy heuristic algorithm was also implemented for finding the 
objective spectrum-reuse set. Numerical results showed that the proposed algorithm is 
capable of improving both the D2D-access probability and the sum throughput of the whole 
system. It was shown that the proposed greedy resource allocation algorithm is capable of 
improving the D2D-access probability by about 650% and the sum throughput by about 
80%  as compared to the without GRA when 20dBη =  and 50d m= . 
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Fig. 6. Performance comparison of the greedy allocation algorithm and the without greedy allocation 

scheme in terms of the sum throughput gain for variant radius of ILA, where 50cN =  and 
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Appendix  
The sum throughput of the proposed D2D aided cellular systems can be expressed as 
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By further analyzing (25), we have 
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And, we let m denote the size of reuse set,  
when m=2, we can get 
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When m=3, we can get 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

1 2 1 2 1 2 1 2

1 2 1 2

1 2

1 2 1 2

,

2 2 2 2 22 2

1

3 33

1 22 2 2 3 32 32 2

1

1

1 1 11
2 2 2

1
3

1
2 3

1

k

k

k

c d d c d c d d d c d d
i j i j j i j i j j j i j j

c d c d c d d d
i j i j i j j j

k

c d d
i j j

c d c d d c d d
i j i j j i j j

k

c
i j

C C

γγγγγγγγγγγγγ           

γγγγγγγγ      

γγγ 

γγγγγγγγ      

γγ

=

=

= + + + + + + +

≤ + + + + + + + +

+ + +

≤ + + + + + + + +

≤ + +

∑

∑

( ) ( )1 2 1 2

1 22 2 3
2 2

1
,

2 3
d c d d c d d

i j j i j j
k

C Cγγγγγγ    
=

+ + + + + +∑

 

when m=4, we can get 
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thus proved (10) and (11). 
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