• Title/Summary/Keyword: Signal to Interference and Noise Ratio

Search Result 448, Processing Time 0.038 seconds

Output SINR Analysis of GPS Adaptive Interference Canceler Based on Modified Despreader (변형된 역확산기 기반의 GPS 적응 간섭제거기의 출력 SINR 해석)

  • Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.195-202
    • /
    • 2014
  • The Global Positioning System (GPS), which has various military and commercial applications, is designed to estimate the location of the specific user or object. In order to accurately estimate the location, GPS requires at least four satellite signals. The GPS receiver operates on extremely low signal-to-noise ratio (SNR) environment and it may suffer from various interference signals with the extremely high power. In this paper, we introduce a blind adaptive receiver based on the modified despreader, which suppress interference signals and detect GPS signals of interest without requiring explicit angle-of-arrival (AOA) information. We, also, provide the mathematical analysis for the signal-to-interference and noise ratio (SINR) of the modified despeader beamformer output. A representative computer simulation example is presented to illustrate the interference suppression performance of the considered GPS receiver and mathematical analysis of the SINR.

Multidimensional Adaptive Noise Cancellation of Stress ECG Signal

  • Gautam, Alka;Lee, Young-Dong;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.285-288
    • /
    • 2008
  • In ubiquitous computing environment the biological signal ECG (Electrocardiogram signal) is usually recorded with noise components. Adaptive interference (or noise) canceller do adaptive filtering of the noise reference input to maximally match and subtract out noise or interference from the primary (signal plus noise) input thereby adaptively eliminate unwanted interference from the ECG signal. Measured Stress ECG (or exercise ECG signal) signal have three major noisy component like baseline wander noise, motion artifact noise and EMG (Electro-mayo-cardiogram) noise. These noises are not only distorted signal but also root of incorrect diagnosis while ECG data are analyzed. Motion artifact and EMG noises behave like wide band spectrum signals, and they considerably do overlapping with the ECG spectrum. Here the multidimensional adaptive method used for filtering which is more effective to improve signal to noise ratio.

  • PDF

Inter Pixel Interference Reduction using Interference Ratio Mask for Holographic Data Storage (홀로그래픽 정보 저장장치에서의 간섭 비율 마스크를 이용한 인접 픽셀 간섭의 개선을 위한 연구)

  • Lee, Jae-Seong;Lim, Sung-Yong;Kim, Nak-Yeong;Kim, Do-Hyung;Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.1
    • /
    • pp.42-46
    • /
    • 2011
  • Holographic Data Storage System (HDSS), one of the next generation data storage devices, is a 2-dimensional page oriented memory system using volume hologram. HDSS has many noise sources such as crosstalk, scattering and inter pixel interference, etc. The noise source is changing intensity of the light used for carrying the data signal in HDSS. The inter pixel interference results in decrease of Signal to Noise Ratio and increase of Bit Error Rate. In order to improve these problems, this paper proposes to compensate the inter pixel interference with simple interference mask.

Effects of Radio Interference from Digital Phase Modulation(PSK) System on Analog Frequency Modulation(FM) System (아나로그 주파수변조(FM) 무선통신 시스템에 미치는 디지탈 위상변조(PSK) 무선통신 시스템의 간섭 영향)

  • 조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.8 no.2
    • /
    • pp.63-75
    • /
    • 1983
  • This paper has investigated and discussed the effects of multiple PSK signals upon an wideband FM signal in an intersystem interference environment between analog and digital radios. Using the derived approximate equation for the output haseband interference noise, the signal-to-interference noise power ratio(SNR) in the top channel baseband signal has been numerically calculated. The results are plotted in graphs as the functions of carrier-to-noise ratio(CNR), carrier-to interfer power ratio(CIR), and normalized carrier separation. From the results in this paper, one can know some optimu, or suitable, operating conditions(frequency allocation, bandwidth, and power, etc.) for an FM channel in the intersystemn interferences from digital PSK channels.

  • PDF

Error Performance Analysis of Digital Radio Signals in an Electromagnetic Interference (EMI) Environment of Impulsive Noise Plus Disturbance (임펄스 잡음과 방해파에 의한 전자파 장해(EMI) 환경하에서의 디지털 무선통신 신호의 오율해석)

  • Cho, Sung-Eon;Leem, Kill-Yong;Cho, Sung-Joon;Lee, Jin
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.3
    • /
    • pp.36-54
    • /
    • 1995
  • The error performance of digital radio signals (i.e., M-ary PSK signal, DQPSK signal, MSK signal, GMSK signal) interfered by impulsive noise and electromagnetic interference (EMI) is analyzed and discussed. In analysis at first, the error rate equations have been derived in an electromagnetic interference plus impulsive noise environment. And then, the error performance has been evaluated and shown in figures as a function of carrier-to-noise ratio, carrier-to-interference ratio, impu- lsive index, gaussian noise to impulsive noise power ratio, and interference index to measure the amount of error degradation in digital radio signals. From the obtained results we have known that in the presence of m-distributed tone interference plus inpulsive noise, the more significant the electromagnetic interference amplitude varies, the more significant performance degradation is produced. The listing the digital radio signals from the most degraded to the least is that DQPSK, GMSK, QPSK and MSK signal. In the constant amplitude tone interference plus impulsive noise environment, the effect of in- terference nearly disappears over about 20dB in CIR. The effect of constant tone interference on error rate performance is reduced more remarkably in the region from 10dB to 15dB in CIR. In both enviroments of m-distributed tone interference and constant amplitude tone interference, the more electromagnetic interference amplitude varies and CIR increases, the more error perfor- mance is improved. But it is found out that the performance can not be improved significantly even the electromagnetic interference becomes weak. This describes that the impulsive noise affects dominantly to the performance degradation.

  • PDF

SLNR-based Precoder Design in Multiuser Interference Channel with Channel Estimation Error

  • Seo, Bangwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.40-52
    • /
    • 2020
  • In this paper, we consider a precoder design problem for multiuser interference channel. Most of the conventional schemes for precoder design utilize a signal-to-interference-plus-noise ratio (SINR) as a cost function. However, since the SINR metric of a desired transmitter-receiver pair is a function of precoding vectors of all transmitters in the multiuser interference channel, an analytic closed-form solution is not available for the precoding vector of a desired transmitter that maximizes the SINR metric. To eliminate coupling between the precoding vectors of all transmitters and to find a closed-form solution for the precoding vector of the desired transmitter, we use a signal-to-leakage-plus-noise ratio (SLNR) instead as a cost function because the SLNR at a transmitter is a function of the precoding vector of the desired transmitter only. In addition, channel estimation errors for undesired links are considered when designing the precoding vector because they are inevitable in a multiuser interference channel. In this case, we propose a design scheme for the precoding vector that is robust to the channel estimation error. In the proposed scheme, the precoding vector is designed to maximize the worst-case SLNR. Through computer simulation, we show that the proposed scheme has better performance than the conventional scheme in terms of SLNR, SINR, and sum rate of all users.

APK Error Performance in the Environment of Cochannel Interference and Impulsive Noise (동일채널간섭 및 임펄스성 잡음환경하에서의 APK 시스템의 오율특성)

  • 공병옥;채종원;조성준
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1984.04a
    • /
    • pp.37-41
    • /
    • 1984
  • The error rate performance of amplitude phase keying system has been studied in the environment of cochannel interference and impulsive noise. We have derived the error probability equations of amplitude shift keying signal and phase shift keying signal, and combining the results, we have evaluated the circular APK signal which is the one of the several cases of APK arrays. Using the derived equations, the circular APK system has been evaluated in terms of carrier-to-noise power ratio(CNR), carrier-to-interferer power ratio(CIR), and impulsive index. The graphic results show us the best case and worst case of APK system, and good performance compared to the other systems in cochannel interference and impulsive noise.

  • PDF

Joint Detection Method for Non-orthogonal Multiple Access System Based on Linear Precoding and Serial Interference Cancellation

  • Li, Jianpo;Wang, Qiwei
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.933-946
    • /
    • 2021
  • In the non-orthogonal multiple access (NOMA) system, multiple user signals on the single carrier are superimposed in a non-orthogonal manner, which results in the interference between non-orthogonal users and noise interference in the channel. To solve this problem, an improved algorithm combining regularized zero-forcing (RZF) precoding with minimum mean square error-serial interference cancellation (MMSE-SIC) detection is proposed. The algorithm uses RZF precoding combined with successive over-relaxation (SOR) method at the base station to preprocess the source signal, which can balance the effects of non-orthogonal inter-user interference and noise interference, and generate a precoded signal suitable for transmission in the channel. At the receiver, the MMSE-SIC detection algorithm is used to further eliminate the interference in the signal for the received superimposed signal, and reduce the calculation complexity through the QR decomposition of the matrix. The simulation results show that the proposed joint detection algorithm has good applicability to eliminate the interference of non-orthogonal users, and it has low complexity and fast convergence speed. Compared with other traditional method, the improved method has lower error rate under different signal-to-interference and noise ratio (SINR).

A Leakage-Based Solution for Interference Alignment in MIMO Interference Channel Networks

  • Shrestha, Robin;Bae, Insan;Kim, Jae Moung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.424-442
    • /
    • 2014
  • Most recent research on iterative solutions for interference alignment (IA) presents solutions assuming channel reciprocity based on the suppression of interference from undesired sources by using an appropriate decoding matrix also known as a receiver combining matrix for multiple input multiple output (MIMO) interference channel networks and reciprocal networks. In this paper, we present an alternative solution for IA by designing precoding and decoding matrices based on the concept of signal leakage (the measure of signal power that leaks to unintended users) on each transmit side. We propose an iterative algorithm for an IA solution based on maximization of the signal-to-leakage-and-noise ratio (SLNR) of the transmitted signal from each transmitter. In order to make an algorithm removing the requirement of channel reciprocity, we deploy maximization of the signal-to-interference-and-noise ratio (SINR) in the design of the decoding matrices. We show through simulation that minimizing the leakage in each transmission can help achieve enhanced performance in terms of aggregate sum capacity in the system.

Intersystem Interference between Analog and Digital Communication Systems, Part 1: Interference into PSK signal from FDM-FM signal (아나로그 및 디지탈 무선통신 시스템간의 간섭 영향 -PSK 신호에 미치는 FM 신호의 간섭-)

  • 조성준
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.6
    • /
    • pp.29-34
    • /
    • 1978
  • It has been investigated that the elect of an wideband FDM-FM signal upon an M-ary coherent PSK (MCPSK) signal in an intersystem radio interference environment between analog and digital systems, which had not been discussed before and had been obscure. It is assumed that PSK and FM signal are adjacently allocated in same radio frequency band. And the symbol error performance of MCPSK signal with co-channel and adjacent channel interference from an FDM-FM signal is evaluated with considering the receiver noise. The numerical results for the theoretical symbol error rates of MCPSK system in the presence of Gaussian noise and co-channel or adjacent channel interference are given in graphical forms as the function of carrier-to-noise ratio (CNR), carrier-to-interference ratio (CIR) and normalized carrier separation between the desired PSK and interfering FM signal. The objective of this research is to find some optimal conditions for coexistence of analog and digital systems in an intersystem interference environment. The results we obtained here stress a possible utilization of them for designing the frequency allocation, bandwidth and power of PSK channel in the intersystem interference from an FDM-FM signall.

  • PDF