• Title/Summary/Keyword: Signal to Interference Ratio(SIR)

Search Result 68, Processing Time 0.02 seconds

An Unbiased Signal-to-Interference Ratio Estimator for the High Speed Downlink Packet Access System

  • Won, Seok-Ho;Kim, Whan-Woo;Ahn, Jae-Min;Lyu, Deuk-Su
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.418-421
    • /
    • 2003
  • We propose an unbiased signal-to-interference ratio (SIR) estimator for the high speed downlink packet access (HSDPA) system. The proposed SIR estimator solves the problem of underestimation present in conventional SIR estimators and is suitable for channel quality measurement in the adaptive modulation and coding scheme of HSDPA, which requires accurate SIR estimation for optimum adaptive modulation and coding selection. Our analysis and simulation results demonstrate the improved estimation performance of the proposed SIR estimator.

  • PDF

Closed-Form Expressions for Selection Combining System Statistics over Correlated Generalized-K Fading Channels in the Presence of Interference

  • Nikolic, Bojana Z.;Stefanovic, Mihajlo C.;Panic, Stefan R.;Anastasov, Jelena A.;Milosevic, Borivoje
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.320-325
    • /
    • 2011
  • This paper considers the effects of simultaneous correlated multipath fading and shadowing on the performances of a signal-to-interference ratio (SIR)-based dual-branch selection combining (SC) diversity receiver. This analysis includes the presence of cochannel interference. A generalized fading/shadowing channel model in an interference-limited correlated fading environment is modeled by generalized-K distribution. Closed-form expressions are obtained for probability density function and cumulative distribution function of the SC output SIR, as well as for the outage probability. Based on this, the influence of various fading and shadowing parameter values and the correlation level on the outage probability is examined.

Performance Analysis of Nonlinear Satellite Communication System in the CCI And ACI Interference Channel (간섭채널에서 비선형 위성 통신 시스템의 특성 분석)

  • 박주석;유흥균;김기근;이대일;김도선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.166-173
    • /
    • 2004
  • Satellite communication system uses a high non-linear HPA(high power amplifiers) in the earth station and satellite transponder. Therefore, it is important to consider the nonlinear effect of HPA on the communication system. In this paper, we find the variation of power spectrum density by nonlinearity HPA and the change of harmonic component according to IBO (input back-off). When the BPSK is used for satellite communication system, we analyze BER performance including the external co-channel interference (CCI) and the adjacent channel interference (ACI) resulting from the HPA nonlinearity. BER degrades as ACI magnitude grows up when the uplink SNR, uplink SIR (signal to co-channel interference power ratio) and downlink SIR are constant at some level. In case there is only non-linear HPA in the satellite, it is shown that BER considerably depends on the ACI magnitude ACI. When there are two non-linear HPAs in the both earth station and satellite, much BER degradation results from the CCI and ACI.

Analysis on Co-channel Interference of Human Body Communication Supporting IEEE 802.15.6 BAN Standard

  • Hwang, Jung-Hwan;Kang, Tae-Wook;Kim, Youn-Tae;Park, Seong-Ook
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.439-449
    • /
    • 2015
  • Human body communication (HBC) is being recognized as a new communication technology for mobile and wearable devices in a body area network (BAN). This paper presents co-channel interference experienced by HBC supporting the physical layer in the IEEE 802.15.6 BAN standard. To analyze the co-channel interference, a co-channel interference model is introduced, and space-domain and time-domain parameters representing an interference environment are generated using the co-channel interference model. A new signal-to-interference ratio (SIR) parameter depending on the peak amplitudes of the data signals causing co-channel interference is defined; co-channel interference can be easily analyzed and modelled using the newly defined SIR. The BER degradation model derived using the co-channel interference model and SIR in this paper can be effectively used to estimate the performance.

A Detection Method for An OFDM Signal Distorted by I/Q Imbalance (I/Q 불균형에 의하여 왜곡된 OFDM 신호의 검출방식)

  • Park Kyung-won;Cho Yong-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1A
    • /
    • pp.37-45
    • /
    • 2005
  • In this paper, after analyzing the effect of I/Q imbalance in an OFDM system, the detection method of an OFDM signal distorted by I/Q imbalance is proposed. Also, the channel estimation and the pilot symbol design scheme are proposed for using the proposed detection method. Since I/Q imbalance in an OFDM system degrades the SIR and the BER(Bit Error Ratio) performance, the robust detection method is required for an OFDM system. the proposed detection method can effectively suppress the interference caused by I/Q imbalance using characteristics of an OFDM signal differently from the conventional method, and results in improving the SIR of a desired OFDM signal.

Pilot Hopping Scheme for Massive Antenna Systems in Cellular Networks (극다중 안테나 셀룰러 시스템을 위한 파일럿 도약 기법)

  • Kim, Seong Hwan;Ban, Tae-Won;Lee, Wongsup;Ryu, Jong Yeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.718-723
    • /
    • 2017
  • We propose a pilot hopping scheme that improves the limited system capacity due to pilot contamination in multi-cell environment with large-scale antenna arrays at a base station, assuming the infinite number of antennas. In the conventional fixed pilot scheme, each user obtains the same signal-to-interference ratio (SIR) over a long period of time. Therefore, a user with strong interference has continuously low SIR which degrades its service quality. In the proposed pilot hopping scheme, different pilot signals are used for each time slot, and different amounts of interference are received every time. When such a pilot hopping technique is applied, the SIR fluctuates at every time slot. When the Hybrid Automatic Repeat & reQuest (HARQ) technique is applied in such a channel, the outage probability and transmission rate are improved. We show that there is the performance gain of the proposed scheme over the conventional scheme through computer simulations.

An Adaptive Signal Transmission/Reception Scheme for Spectral Efficiency Improvement of Multiple Antenna Systems in Cellular Environments (셀룰러 환경에서 다중 안테나 시스템의 전송 효율 증대를 위한 적응적 송수신 방안)

  • Jin, Gwy-Un;Kim, Seong-Min;Chang, Jae-Won;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.429-437
    • /
    • 2008
  • Multiple-input multiple-output (MIMO) techniques can be used for the spectral efficiency enhancement of the cellular systems, which can be categorized into spatial multiplexing (SM) and spatial diversity schemes. MIMO systems suffer a severe performance degradation due to the intercell interference from the adjacent cells as the mobile terminal moves toward the cell boundary. Therefore for the spectral efficiency enhancement, an appropriate transmission scheme for the given channel environment and reception scheme which can mitigate the intercell interference are required. In this paper, we propose an adaptive signal transmission/reception scheme for the spectral efficiency improvement of $M_R{\times}M_T$ MIMO systems, present the decision criteria for the adaptive operation of the proposed scheme, and demonstrate the performance gain. The proposed scheme performs adaptive transmission using spatial multiplexing and spatial diversity, and adaptive reception using maximal ratio combining (MRC) and intercell spatial demultiplexing (ISD) when the spatial diversity transmission is used at the transmitter. Spatial multiplexing/demultiplexing is performed at the high signal-to-interference ratio (SIR) range, and the transmit diversity in conjunction with the adaptive reception uses either conventional MRC or ISD which can mitigate the $M_R-1$ interference signals, based on the mobile location. For the performance evaluation of the proposed adaptive scheme, the probability density function (pdf) of the effective SIR for the transmission/reception methods in consideration are derived for $M_R{\times}M_T$ MIMO systems. Using the results, the average effective SIR and spectral efficiency are presented and compared with simulation results.

Performance Evaluation of Short-Range Communication Home Network in the Presence of Co-Channel Interference (동일채널간섭이 존재하는 홈 네트워크에서 근거리 통신 시스템의 성능 평가)

  • Roh Jae-Sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.555-558
    • /
    • 2006
  • Bluetooth is an open specification technology for short-range wireless connectivity between electronic devices. This paper analyzes the effects of interference on the performance of a Bluetooth system. Two performance criteria used in the study are the signal to interference power ratio (SIR) and the bit error rate (BER) of the bits received. The interference from various sources on the performance of a Bluetooth device is analyzed, and these quantities are plotted against Eb/No and SIR for various channel conditions in figures.

  • PDF

An Analysis of the Effect of Doppler Spread on Transparent Multi-hop Relays Systems Based on OFDM (OFDM 기반의 트랜스패런트 다중 홉 릴레이 시스템에서 도플러 확산의 영향 분석)

  • Woo, Kyung-Soo;Cho, Yong-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.40-46
    • /
    • 2007
  • In this paper, the effect of a Doppler Spread caused by a mobile station (MS) is analyzed for transparent mobile multi-hop relays (MMR) systems based on orthogonal frequency division multiplexing (OFDM). The exact expression of interchannel interference (ICI) power and the upper bounds of ICI power are derived for OFDM systems with cooperative MMR or non-coopeartive throughput enhancement (TE) MMR. Also, the exact signal-to-interference ratio (SIR) and its lower bound as well as ICI power and its upper bound, derived in this paper, are evaluated by computer simulation with the OFDM parameter set used for mobile WiMax (WiBro) systems.

Improved SIR-based call admission control for DS-CDMA cellular system (DS-CDMA 셀룰라 시스템을 위한 SIR기반의 개선된 호 수락 제어)

  • 김호준;박병훈;이진호;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.957-966
    • /
    • 1998
  • In this paper an imrpoved Signal-to-Interference ratio(SIR)-based call admission control(CAC) algorithm for DS-CDMA cellular system is proposed and its performance is analyzed. This algorithm uses Residual-Capacity defined asthe additional number of initial calls that a base station can accept such that system-wide outage probability will guaranteed to remain below a certain level. the residual capcity at each cell is calculated according to the reverse-link SIR measured not only at the home cell but also the adjacent cells. Then the adjacent cell interference-coupling coefficient .betha. is used. In this work we propose an improved algorithm that .betha. varies according to the traffic load of the home cell. The influence of traffic condition on system performance, namely blocking probability and outage probability, is then examined via simulation. The performance of the improved algorithm is evaluated both under homogeneous and hot spot traffic loads. The results show that the improved algorithm outperforms conventional algorithms under all load values. Under over-load situation, especially, the improved algorithm gives almost constant outage performance the QoS(quality of service) can be guranted.

  • PDF