• Title/Summary/Keyword: Signal stability

Search Result 899, Processing Time 0.026 seconds

Small-Signal Modeling and Controller Design of Grid-Connected Inverter for Solid State Transformer (반도체 변압기용 단상 계통 연계형 인버터의 소신호 모델링과 제어기 설계)

  • Kim, Bo-Gyeong;Lee, Jun-Young;Lee, Soon-Sinl;Jung, Jee-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.40-47
    • /
    • 2017
  • In this paper, a small signal model for grid-connected inverter with unipolar pulse width modulation method is presented. Small-signal analysis allows to predict the stability and dynamics of the inverter. To regulate output voltage and to achieve power factor correction, inverter has two control loops. Loop gains are useful to identify the stability for multi-loop controlled system. Based on small-signal model, controllers are designed to improve audio susceptibility and output impedance characteristics. Proposed small-signal model and controllers are verified by PSIM simulation and experiments.

Resistive Current Mode Control for the Solar Array Regulator of SPACE Power System (인공위성 시스템을 위한 태양전지 전력조절기의 저항제어)

  • Bae, Hyun-Su;Yang, Jeong-Hwan;Lee, Jae-Ho;Cho, Bo-Hyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.535-542
    • /
    • 2006
  • A large signal stability analysis of the solar array regulator system is performed to facilitate the design and analysis of a Low-Earth-Orbit satellite power system. The effective load characteristics of every controllable method in the solar array system are classified to analyze the large signal stability. Then, using the state plane analysis technique, the stability of various equilibrium points is analyzed. A nonlinear transformation algorithm, which changes the effective load characteristic of the solar array regulator as constant resistive load, is also proposed for the large signal stability. The proposed resistive current mode control system can control the solar array output for purposes such as peak power tracking control and battery charging control. For the verification of the proposed large signal analysis and resistive current mode control, a solar array regulator system consisting of two 100W parallel module buck converters has been built and tested using a real 200W solar array.

A Method to Accelerate Convergence of Hessenberg process for Small Signal Stability Analysis of Large Scale Power Systems (대규모 전력계통의 미소신호 안정도 해석을 위한 Hessenberg Process의 수렴특성 가속화 방법)

  • Song, Sung-Geun;Nam, Ha-Kon;Shim, Kwan-Shik;Moon, Chae-Ju;Kim, Yong-Gu
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.871-874
    • /
    • 1998
  • It is most important in small signal stability analysis of large scale power systems to compute only the dominant eigenvalues selectively with numerical stability and efficiency. Hessenberg process is numerically very stable and identifies the largest eigenvalues in magnitude. Hence, transformed system matrix must be used with the process. Inverse transformation with complex shift provides high selectivity centered on the shift, but does not possess the desired property of computing the dominant mode first. Thus, advantage of high selectivity of the transformation can be fully utilized only when the complex shift is given close to the dominant eigenvalues. In this paper, complex shift is determined by Fourier transforming the results of dynamic simulation with PTI's PSS/E transient simulation program. The convergence in Hessenberg process is accelerated using the iterative scheme. Overall, a numerically stable and very efficient small signal stability program is obtained. The stability and efficiency of the program has been validated against New England 10-machines 39-bus system and KEPCO system.

  • PDF

A Parameter Estimation of Time Signal and Analysis of Low Frequency Oscillation in Power Systems (시간영역에서 파라미터 추정과 전력계통의 저주파진동 해석)

  • Shim Kwan-Shik;Nam Hae-Kon;Kim Yong-Gu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.3
    • /
    • pp.122-132
    • /
    • 2005
  • This paper presents a novel approach based on Prony method to analysis of small signal stability in power system. Prony method is a valuable tool in identifying transfer function and estimating the modal parameter of power system oscillation from measured or computed discrete time signal. This paper define the relative residue of time signal and propose the condition to select low frequency oscillation in each generator. This paper describes the application results of proposed algorithm with respect to KEPCO systems. Simulation results show that the proposed algorithm can be used as another tools of power systems analysis.

Input signal reconstruction for nonlinear systems using iterative learning procedures (반복 학습법에 의한 비선형 계의 입력신호 재현)

  • Seo, Jong-Soo;S. J. Elliott
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.855-861
    • /
    • 2002
  • This paper demonstrates the reconstruction of input signals from only the measured signal for the simulation and endurance test of automobiles. The aim of this research is concerned with input signal reconstruction using various iterative teaming algorithm under the condition of system characteristics. From a linear to nonlinear systems which provides the output signals are estimated in this algorithm which is based on the frequency domain. Our concerns are that the algorithm can assure an acceptable stability and convergence compared to the ordinary iterative learning algorithm. As a practical application, a f car model with nonlinear damper system is used to verify the restoration of input signal especially with a modified iterative loaming algorithm.

  • PDF

Monitoring and Control of Turing Chatter using Sound Pressure and Stability Control Methodology (음압신호와 안정도제어법을 이용한 선삭작업에서의 채터 감시 및 제어)

  • 이성일
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.101-107
    • /
    • 1997
  • In order to detect and suppress chatter in turning process, a stability control methodology was studied through manipulation of spindle speeds regarding to chatter frequencies, The chatter frequency was identified by monitoring and signal processing of sound pressure during turing on a lathe. The stability control methodology can select stable spindle speeds without knowing a prior knowledge of machine compliances and cutting dynamics. Reliability of the developed stability control methodology was verified through turing experiments on an engine lathe. Experimental results show that a microphone is an excellent sensor for chatter detection and control .

  • PDF

Applications of Eigen-Sensitivity for Contingency Screening of Transient Stability in Large Scale Power Systems (대규모 전력계통의 과도안정도 상정사고 선택에 고유치감도 응용)

  • Shim, Kwan-Shik;Nam, Hae-Kon;Kim, Yong-Ku;Song, Sung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.193-196
    • /
    • 1999
  • This paper presents a new systematic contingency selection and screening method for transient stability. The variation of modal synchronizing torque coefficient(MSTC) is computed using eigen-sensitivity analysis of the electromechanical oscillation modes in small signal stability model and contingencies are ranked in decreasing order of the sensitivities of the MSTC(SMSTC). The relevant clusters are identified using the eigenvector or participating factor. The proposed algorithm is tested on the KEPCO system. Ranking obtained by the SMSTC is consistent with the time simulation results by PSS/E.

  • PDF

Analysis of the Factors Affecting Low-Frequency Oscillations in KEPCO Power System` With Pumped-Storage Plant (한전 전력계통의 저주파 진동현상 요인분석;양수발전기 기동시)

  • Kil Yeong Song;Sae Hyuk Kwon;Kyu Min Ro;Seok Ha Song
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.841-849
    • /
    • 1992
  • In power system operation, the stability of synchronous machine has been recognized one of the most important things. AESOPS program developed by EPRI in U.S.A. is a frequency domain analysis program in power system stability and it computes the electro-mechanical oscillation mode. This paper presents how to analyze the power system small signal stability problem efficiently by uusing the AESOPS program and analyze the various factors affecting the damping characteristics of these oscillations in KEPCO power system of 1986 with pumped-storage plant. To reduce the computing time and efforts, selecting the poorly-damped oscillation mode and clustering technique have been used. The characteristics of load, the amount of power flow on the transmission line and the gain of exciter have a significant effects on the damping of the system while the governing system has only a minor one. With the Power System Stabilizers, the stability of the power system has been improved.

  • PDF

Scaling Factor Design Based Variable Step Size Incremental Resistance Maximum Power Point Tracking for PV Systems

  • Ahmed, Emad M.;Shoyama, Masahito
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.164-171
    • /
    • 2012
  • Variable step size maximum power point trackers (MPPTs) are widely used in photovoltaic (PV) systems to extract the peak array power which depends on solar irradiation and array temperature. One essential factor which judges system dynamics and steady state performances is the scaling factor (N), which is used to update the controlling equation in the tracking algorithm to determine a new duty cycle. This paper proposes a novel stability study of variable step size incremental resistance maximum power point tracking (INR MPPT). The main contribution of this analysis appears when developing the overall small signal model of the PV system. Therefore, by using linear control theory, the boundary value of the scaling factor can be determined. The theoretical analysis and the design principle of the proposed stability analysis have been validated using MATLAB simulations, and experimentally using a fixed point digital signal processor (TMS320F2808).

Analysis of Oscillation Modes in Discrete Power Systems Including GTO Controlled STATCOM by the RCF Method (GTO 제어 STATCOM을 포함하는 이산 전력시스템의 RCF 해석법에 의한 진동모드 해석)

  • Kim, Deok-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.829-833
    • /
    • 2007
  • In this paper, the RCF method is applied to analyze small signal stability of power systems including GTO controlled parallel FACTS equipments such as STATCOM. To apply the RCF method in power system small signal stability problems, state transition equations of generator, controllers and STATCOM are presented. In eigenvalue analysis of power systems, STATCOM is modelled as the equivalents voltage source model and the PWM switching circuit model. As a result of simulation, the RCF method is very powerful to calculate the oscillation modes exactly after the switching operations, and useful to analyze the small signal stability of power systems with periodically operated switching devices such as STATCOM.