• Title/Summary/Keyword: Signal receiving system

Search Result 336, Processing Time 0.021 seconds

A Study on the real-time Position-searching System using the Amplitude Approach Method (Amplitude Approach 방법을 이용한 신호원의 실시간 위치탐지에 관한 연구)

  • 신정록;송우영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.2
    • /
    • pp.105-114
    • /
    • 2000
  • In this Paper in order to break with real-time position of signal source which have first dimension motion, the N antenna is arrayed with half-circle, the incident angle of signal source from receiving power pattern to receive at receive antenna is estimated and measured, and the system that measure horizontal moving distance of signal source is designed. Signal source is constructed by 10-20dBm transmitter power which frequency is 10.52GHz of X band, and on horizontally moving the position of signal source. validity of new method is confirmed.

  • PDF

Implementation of Tone Control Module in Anchor System for Improved Audio Quality

  • Seungwon Lee;Soonchul Kwon;Seunghyun Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.10-21
    • /
    • 2024
  • Recently, audio systems are changing the configuration of conventional sound reinforcement (SR) systems and public address (PA) systems by using audio over IP (AoIP), a technology that can transmit and receive audio signals based on internet protocol (IP). With the advancement of IP technology, AoIP technologies are leading the audio market and various technologies are being released. In particular, audio networks and control hierarchy over peer-to-peer (Anchor) technology based on AoIP is a system that transmits and receives audio signals over a wide bandwidth without an audio mixer, creating a novel paradigm for existing audio system configurations. Anchor technology forms an audio system by connecting audio sources and output equipment with On-site audio center (OAC), a device that can transmit and receive IP. Anchor's receiving OAC is capable of receiving and mixing audio signals transmitted from different IPs, making it possible to configure a novel audio system by replacing the conventional audio mixer. However, Anchor technology does not have the ability to provide audio effects to input devices such as microphones and instruments in the audio system configuration. Due to this, when individual control of each audio source is required, there is a problem of not being able to control the input signal, and it is impossible to individually affect a specific input signal. In this paper, we implemented a tone control module that can individually control the tone of the audio source of the input device using the audio processor core in the audio system based on Anchor technology, tone control for audio sources is possible through a tone control module connected to the transmitting OAC. As a result of the study, we confirmed that OAC receives the signal from the audio source, adjusts the tone and outputs it on the tone control module. Based on this, it was possible to solve problems that occurred in Anchor technology through transmitting OAC and tone control modules. In the future, we hope that the audio system configuration using Anchor technology will become established as the standard for audio equipment.

Robot User Control System using Hand Gesture Recognizer (수신호 인식기를 이용한 로봇 사용자 제어 시스템)

  • Shon, Su-Won;Beh, Joung-Hoon;Yang, Cheol-Jong;Wang, Han;Ko, Han-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.368-374
    • /
    • 2011
  • This paper proposes a robot control human interface using Markov model (HMM) based hand signal recognizer. The command receiving humanoid robot sends webcam images to a client computer. The client computer then extracts the intended commanding hum n's hand motion descriptors. Upon the feature acquisition, the hand signal recognizer carries out the recognition procedure. The recognition result is then sent back to the robot for responsive actions. The system performance is evaluated by measuring the recognition of '48 hand signal set' which is created randomly using fundamental hand motion set. For isolated motion recognition, '48 hand signal set' shows 97.07% recognition rate while the 'baseline hand signal set' shows 92.4%. This result validates the proposed hand signal recognizer is indeed highly discernable. For the '48 hand signal set' connected motions, it shows 97.37% recognition rate. The relevant experiments demonstrate that the proposed system is promising for real world human-robot interface application.

NASA EOS DB Receiving System Development by KARI

  • Ahn, Sang-il;Koo, In-Hoi;Yang, Hyung-Mo;Hyun, Dae-Hwan;Choi, Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.89-94
    • /
    • 2002
  • Recently, DARI implemented the receiving and processing system for MODIS sensor data from NASA EOS satellites (TERRA and AQUA). This paper shows the development strategy considered, system requirement derived, system design, characteristic and test results of processing system. System operation concept and sample image are also provided. Implemented system was proven to be fully operational through lots of pass operations activities from RF signal reception to level-1 processing.

  • PDF

NASA EOS DB Receiving System Development by KARI

  • Ahn, Sang-Il;Koo, In-Hoi;Yang, Hyung-Mo;Hyun, Dae-Hwan;Choi, Hae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • Recently, KARI implemented the receiving and processing system for MODIS sensor data from NASA EOS satellites (TERRA and AQUA). This paper shows the development strategy considered, system requirement derived, system design, characteristic and test results of processing system. System operation concept and sample image are also provided. Implemented system was proven to be fully operational through lots of pass operations activities from RF signal reception to level-1 processing.

A design of hybrid detection system with long term operating reliability in underwater (장기 동작 신뢰성을 고려한 수중 복합 탐지 시스템 설계)

  • Chung, Hyun-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.198-205
    • /
    • 2005
  • Recently, the systems using multiple sensors such as magnetic, acoustic and pressure sensor are used for detection of underwater objects or vehicles. Those systems have difficulty of maintenance and repair because they operate underwater. Thus, this paper describes a hybrid detection system with long term operating reliability. This has a multi-signal transmission structure to have a high reliability. First, a signal transmission & receiving part, which transfers data from underwater sensors to land and receive control message from land through optical cable, has 4 multi-path. Second, the nodes for signal transmission are connected dually each other with single-hop construction and sensors are connected to a couple of neighboring nodes. This enables the output signal to transmit from a node to the next node and the next but one node together. Also, the signal from a sensor can be transmitted to two nodes at the same time. Therefore, the system with this construction has high reliability in long term operation because it makes possible to transmit sensor data to another node which works normally although a transmission node or cable in system have some faults.

Software-Based Loran-C Signal Processing (소프트웨어 기반 Loran-C 신호 처리)

  • Im, Jun-Hyuck;Im, Sung-Hyuck;Kim, Woo-Hyun;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.188-193
    • /
    • 2010
  • With GPS being the primary navigation system, Loran use is in steep decline. However, according to the final report of vulnerability assessment of the transportation infrastructure relying on the global positioning system prepared by the John A. Volpe National Transportation Systems Center, there are current attempts to enhance and re-popularize Loran as a GPS backup system through the characteristic of the ground based low frequency navigation system. To advance the Loran system such as Loran-C modernization and eLoran development, research is definitely needed in the field of Loran-C receiver signal processing as well as Loran-C signal design and the technology of a receiver. We have developed a set of Matlab tools, which implement a software Loran-C receiver that performs the receiver's position determination through the following procedure. The procedure consists of receiving the Loran-C signal, cycle selection, calculation of the TDOA and range, and receiver's position determination through the Least Square Method. We experiences the effect of an incorrect cycle selection and various error factors (ECD, ASF, sky wave, CRI, etc.) from the result of the Loran-C signal processing. It is apparent that researches which focus on the elimination and mitigation of various error factors need to be investigated on a software Loran-C receiver. These aspects will be explored in further work through the method such as PLL and Kalman filtering.

An oil spill tracking buoy using GPS (GPS를 활용한 누유 추적부이 시스템)

  • 이종무;홍기용;김선경
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.189-196
    • /
    • 1997
  • An oil tracking system that monitors the spilt oil trajectory by using GPS was developed. The system consists of a tracking buoy deployed on the oil spilt area and an onshore(or onboard) monitoring station. The tracking buoy is equipped with GPS, signal converter, handy radio and battery while the monitoring station includes a station radio, signal converter, antennas and PC. The hull shape of buoy is designed to effectively simulate the spilt oil movement at sea surface. Radio sets for HAM are used as a data transmitter and a data receiving station, and signal converter is also for amateur use. A field experiment was conducted and it was shown that the integrated system is relable and robust. The developed oil tracking system reveals reatively good performance at reasonable cost. In favorable environment the system may communicate in the distance more than 50km.

  • PDF

Finite Element Analysis for Acoustic Characteristics of Piezoelectric Underwater Acoustic Sensors (압전 수중음향센서 음향특성의 유한요소해석)

  • 김재환;손선봉;조철희;조치영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.68-76
    • /
    • 2001
  • Sonar is the system that detects objects and finds their location in water by using the echo ranging technique. In order to have excellent performance in variable environment, acoustic characteristics of this system must be analyzed accurately. In this paper, based on the finite element analysis, modeling and analysis of acoustic characteristics of underwater acoustic sensors are preformed. Couplings between piezoelectric and elastic materials, and fluid and structure systems associated with the modeling of piezoelectric underwater acoustic sensors are formulated. In the finite element modeling of unbounded acoustic fluid, IWEE (Infinite Eave Envelop Element) is adopted to take into account the infinite domain. When an incidence wave excites the surface of Tonpilz underwater acoustic sensor, the scattered wave on the sensor is founded by satisfying the radiation condition at the artificial boundary approximately. Based on this scattering analysis, the electrical response of the underwater acoustic sensor under incidence, so called RVS (Receiving Voltage Signal) is founded accurately. This will devote to design Sonar systems accurately.

  • PDF

CDMA Pilot Receiving Circuit Using Sequence Estimator (시퀀스 추정기를 사용하는 CDMA 파일럿 수신회로)

  • Lee, Seong-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.32-38
    • /
    • 2006
  • In this paper a sequence estimator of CDMA communication system is suggested. A sequence estimator uses Galois Field operation. A sequence estimator can provide another CDMA pilot signal which is un-modulated spreaded signal. A estimated sequence signal and received signal have no correlation. Tow signals can be summed using MRC(maximal ratio combine) method. The stronger signal can be added as a larger ratio, but the weaker signal can be added as a smaller ratio. We can distinguish strong signal using SNR estimator. Therefore it is possible to receive an additional pilot signal, and to support more reliable communications by using sequence estimator.