• 제목/요약/키워드: Signal Transduction

검색결과 1,010건 처리시간 0.034초

A Cannabinoid Receptor Agonist N-Arachidonoyl Dopamine Inhibits Adipocyte Differentiation in Human Mesenchymal Stem Cells

  • Ahn, Seyeon;Yi, Sodam;Seo, Won Jong;Lee, Myeong Jung;Song, Young Keun;Baek, Seung Yong;Yu, Jinha;Hong, Soo Hyun;Lee, Jinyoung;Shin, Dong Wook;Jeong, Lak Shin;Noh, Minsoo
    • Biomolecules & Therapeutics
    • /
    • 제23권3호
    • /
    • pp.218-224
    • /
    • 2015
  • Endocannabinoids can affect multiple cellular targets, such as cannabinoid (CB) receptors, transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and peroxisome proliferator-activated receptor ${\gamma}$($PPAR{\gamma}$). The stimuli to induce adipocyte differentiation in hBM-MSCs increase the gene transcription of the $CB_1$ receptor, TRPV1 and $PPAR{\gamma}$. In this study, the effects of three endocannabinoids, N-arachidonoyl ethanolamine (AEA), N-arachidonoyl dopamine (NADA) and 2-arachidonoyl glycerol (2-AG), on adipogenesis in hBM-MSCs were evaluated. The adipocyte differentiation was promoted by AEA whereas inhibited by NADA. No change was observed by the treatment of non-cytotoxic concentrations of 2-AG. The difference between AEA and NADA in the regulation of adipogenesis is associated with their effects on $PPAR{\gamma}$ transactivation. AEA can directly activate $PPAR{\gamma}$. The effect of AEA on $PPAR{\gamma}$ in hBM-MSCs may prevail over that on the $CB_1$ receptor mediated signal transduction, giving rise to the AEA-induced promotion of adipogenesis. In contrast, NADA had no effect on the $PPAR{\gamma}$ activity in the $PPAR{\gamma}$ transactivation assay. The inhibitory effect of NADA on adipogenesis in hBM-MSCs was reversed not by capsazepine, a TRPV1 antagonist, but by rimonabant, a $CB_1$ antagonist/inverse agonist. Rimonabant by itself promoted adipogenesis in hBM-MSCs, which may be interpreted as the result of the inverse agonism of the $CB_1$ receptor. This result suggests that the constantly active $CB_1$ receptor may contribute to suppress the adipocyte differentiation of hBM-MSCs. Therefore, the selective $CB_1$ agonists that are unable to affect cellular $PPAR{\gamma}$ activity inhibit adipogenesis in hBM-MSCs.

가와사끼병 환자에서 분리한 CD14양성 세포에서 Toll-like Receptor-2의 발현 (Expression of Toll-like Receptor-2 on the Peripheral Blood Monocytes in Kawasaki Disease Patients)

  • 황대환;한정우;최경민;신경미;김동수
    • Clinical and Experimental Pediatrics
    • /
    • 제48권3호
    • /
    • pp.315-320
    • /
    • 2005
  • 목 적 : 본 연구에서는 가와사끼병에서 toll-like receptor(TLR)의 발현정도를 살펴 염증반응이 유발되기 시작하는 기전에 대해 접근하고자 하였다. 방 법 : 2003년 3월부터 8월까지 연세의료원에서 가와사끼병으로 진단 받은 환아 10명과 발열대조군 10명 및 정상대조군 10명의 말초혈액을 얻은 후 유세포분석기(flow cytometry)를 시행하여 CD14 양성인 단핵구에서의 TLR-2 발현정도를 측정하였다. 또한 말초 혈액 단핵구의 total RNA를 분리한 후 역전사중합효소 연쇄반응(RT-PCR)을 시행하여 TLR-2의 mRNA 발현을 살펴보았다. 결 과 : 환자군에서의 TLR-2 발현은 정상대조군보다 통계적으로 유의하게 증가되어 있었으나 임상경과에 따른 양상을 보면 급성기보다 아급성기에서 감소하였지만 통계적으로 유의한 차이는 보이지 않았고 환자군과 발열대조군의 TLR-2 발현도 의미있는 차이를 보이지 않았다. 또한 급성기 환자군의 말초혈액 단 핵구에서 TLR-2의 mRNA 발현이 증가되어 있었다. 결 론 : TLR-2의 발현은 가와사끼병 환자에서 정상대조군과 비교하여 증가되어 있었으며 이는 TLR 및 이를 통한 선천성 면역계(innate immunity)가 가와사끼병의 병인과 연관될 수 있음을 시사한다. 앞으로 TLR의 발현이 가와사끼병에서의 염증유발에 있어 구체적으로 어떤 역할을 하는지에 대한 연구가 더 필요할 것으로 사료된다.

Identification of Differentially Expressed Genes Related to Intramuscular Fat Development in the Early and Late Fattening Stages of Hanwoo Steers

  • Lee, Seung-Hwan;Park, Eung-Woo;Cho, Yong-Min;Kim, Sung-Kon;Lee, Jun-Heon;Jeon, Jin-Tae;Lee, Chang-Soo;Im, Seok-Ki;Oh, Sung-Jong;Thompson, J.M.;Yoon, Du-Hak
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.757-764
    • /
    • 2007
  • Marbling of cattle meat is dependent on the coordinated expression of multiple genes. Cattle dramatically increase their intramuscular fat content in the longissimus dorsi muscle between 12 and 27 months of age. We used the annealing control primer (ACP)-differential display RT-PCR method to identify differentially expressed genes (DEGs) that may participate in the development of intramuscular fat between early (12 months old) and late fattening stages (27 months old). Using 20 arbitrary ACP primers, we identified and sequenced 14 DEGs. BLAST searches revealed that expression of the MDH, PI4-K, ferritin, ICER, NID-2, WDNMI, telethonin, filamin, and desmin (DES) genes increased while that of GAPD, COP VII, ACTA1, CamK II, and nebulin decreased during the late fattening stage. The results of functional categorization using the Gene Ontology database for 14 known genes indicated that MDH, GAPD, and COP VII are involved in metabolic pathways such as glycolysis and the TCA cycle, whereas telethonin, filamin, nebulin, desmin, and ACTA1 contribute to the muscle contractile apparatus, and PI4-K, CamK II, and ICER have roles in signal transduction pathways regulated by growth factor or hormones. The final three genes, NID-2, WDNMI, and ferritin, are involved in iron transport and extracellular protein inhibition. The expression patterns were confirmed for seven genes (MDH, PI4-K, ferritin, ICER, nebulin, WDNMI, and telethonin) using real-time PCR. We found that the novel transcription repressor ICER gene was highly expressed in the late fattening stage and during bovine preadipocyte differentiation. This information may be helpful in selecting candidate genes that participate in intramuscular fat development in cattle.

Isolation and Characterization of Mouse Testis Specific Serine/Threonine Kinase 5 Possessing Four Alternatively Spliced Variants

  • Wei, Youheng;Fu, Guolong;Hu, Hairong;Lin, Gang;Yang, Jingchun;Guo, Jinhu;Zhu, Qiquan;Yu, Long
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.749-756
    • /
    • 2007
  • Phosphorylation on serine/threonine or tyrosine residues of target proteins is an essential and significant regulatory mechanism in signal transduction during many cellular and life processes, including spermatogenesis, oogenesis and fertilization. In the present work, we reported the isolation and characterization of mouse testis-specific serine/threonine kinase 5 (Tssk5), which contains four alternatively spliced variants including, Tssk5$\alpha$, Tssk5$\beta$, Tssk5$\gamma$ and Tssk5$\delta$. Moreover, the locus of Tssk5 is on chromosome 14qC3 and the four variants had a similar high expression in the testis and the heart; however, had a low expression in other tissues, except for Tssk5$\alpha$ which also had comparably high expression in the spleen. Each variant of Tssk5 expression began in the testis 16 days after birth. Aside from TSSK5$\alpha$, the other isoforms have an insertion of ten amino acid residues (RLTPSLSAAG) in region VIb (HRD domain) (His-Arg-Asp). Moreover, only TSSK5$\alpha$ exhibited kinase activity and consistently, a further Luciferase Reporter Assay demonstrated that TSSK5$\beta$, TSSK5$\gamma$ and TSSK5$\delta$ cannot be stimulated at the CREB/CRE responsive pathway in comparison to TSSK5$\alpha$. These findings suggest that TSSK5$\beta$, TSSK5$\gamma$, TSSK5$\delta$ may be pseudokinases due to the insertion, which may damage the structure responsible for active kinase activity. Pull-down assay experiments indicated that TSSK5$\beta$, TSSK5 $\gamma$ and TSSK5$\delta$ can directly interact with TSSK5$\alpha$. In summary, these four isoforms with similar expression patterns may be involved in spermatogenesis through a coordinative way in testis.

Modulatory Effect of the Tyrosine Kinase and Tyrosine Phosphatase on the ACh-activated $K^{+}$ Channel in Adult Rat Atrial Cells

  • Chang, Kyeong-Jae;Rhie, Sang-Ho;Heo, Ilo;Kim, Yang-Mi;Haan, Jae-Hee;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • 제30권2호
    • /
    • pp.209-218
    • /
    • 1996
  • Acetylcholine (ACh) activates the inwardly rectifying muscarinic $K^{+}$ channel in rat atrial cells via pertussis toxin (PTX)-sensitive G-protein ($G_k$) coupled with the muscarinic receptor (mAChR). Although this $K^{+}\;(K_{ACh})$ channel function has reported to be modulated by the phosphorylation process, a kinase and phosphatase involved in these processes are still unclear. Since either PKA or PKC was not effective on this ATP-modulation, the present study examined the possible involvement of the protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) in the function of the $K_{ACh}$ Channel. In the inside-out (I/O) patch preparation excised from the adult rat atrial cell, when activated by 10 ${\mu}M$ ACh in the pipette and 100 ${\mu}M$ GTP in the bath, the mean open time (${\tau}_{o}$) and the channel activity ($K_{ACh}$) was 1.13 ms (n=5) and 0.19 (n=6), respectively. Following the application of 1 mM ATP into the bath, ${\tau}_{o}$ increased by 34% (1.54 ms, n=5) and $K_{ACh}$ by 66% (0.28, n=6). Channel function elevated by ATP was lasted after washout of ATP. However, this ATP-induced increase in the $K_{ACh}$ channel function did not occur in pretreated cells with genistein ($50{\sim}100 {\mu}M$), a selective PTK inhibitor, but occurred in pretreated cells with equimolar daidzein, a negative control of the genistein. On the contrary, PTP which acts on tyrosine residue conversely reversed both ATP-induced increased ${\tau}_{o}$ by 32% (1.20 ms, n=3) and $K_{ACh}$ by 41% (0.15, n=3), respectively. Taken together, these results suggest that $K_{ACh}$ channel may, at least partly, be regulated by the tyrosyl phosphorylation, although it is unclear where this process exerts on the muscarinic signal transduction pathway comprising the mAChR-$G_{k}$-the $K_{ACh}$ channel.

  • PDF

Ligand Based Pharmacophore Identification and Molecular Docking Studies for Grb2 Inhibitors

  • Arulalapperumal, Venkatesh;Sakkiah, Sugunadevi;Thangapandian, Sundarapandian;Lee, Yun-O;Meganathan, Chandrasekaran;Hwang, Swan;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1707-1714
    • /
    • 2012
  • Grb2 is an adapter protein involved in the signal transduction and cell communication. The Grb2 is responsible for initiation of kinase signaling by Ras activation which leads to the modification in transcription. Ligand based pharmacophore approach was applied to built the suitable pharmacophore model for Grb2. The best pharmacophore model was selected based on the statistical values and then validated by Fischer's randomization method and test set. Hypo1 was selected as a best pharmacophore model based on its statistical values like high cost difference (182.22), lowest RMSD (1.273), and total cost (80.68). It contains four chemical features, one hydrogen bond acceptor (HBA), two hydrophobic (HY), and one ring aromatic (RA). Fischer's randomization results also shows that Hypo1 have a 95% significant level. The correlation coefficient of test set was 0.97 which was close to the training set value (0.94). Thus Hypo1 was used for virtual screening to find the potent inhibitors from various chemical databases. The screened compounds were filtered by Lipinski's rule of five, ADMET and subjected to molecular docking studies. Totally, 11 compounds were selected as a best potent leads from docking studies based on the consensus scoring function and critical interactions with the amino acids in Grb2 active site.

A Methanol Extract of Adansonia digitata L. Leaves Inhibits Pro-Inflammatory iNOS Possibly via the Inhibition of NF-κB Activation

  • Ayele, Yihunie;Kim, Jung-Ah;Park, Eunhee;Kim, Ye-Jung;Retta, Negussie;Dessie, Gulelat;Rhee, Sang-Ki;Koh, Kwangoh;Nam, Kung-Woo;Kim, Hee Seon
    • Biomolecules & Therapeutics
    • /
    • 제21권2호
    • /
    • pp.146-152
    • /
    • 2013
  • This study examined the total polyphenol content of eight wild edible plants from Ethiopia and their effect on NO production in Raw264.7 cells. Owing to its relatively high polyphenol concentration and inhibition of NO production, the methanol extract of Adansonia digitata L. leaf (MEAD) was subjected to detailed evaluation of its antioxidant and anti-inflammatory effects. Antioxidant effects were assessed by measuring free-radical-scavenging activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and oxygen-radical-absorbance capacity (ORAC) assays, while anti-inflammatory effects were assessed by measuring inducible nitric oxide synthase (iNOS) expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In the ORAC assay, MEAD was 10.2 times more potent than vitamin C at eliminating peroxyl radicals. In DPPH assay, MEAD also showed a strong ROS scavenging effect. MEAD significantly inhibited iNOS activity ($IC_{50}=28.6{\mu}g/ml$) of LPS-stimulated Raw264.7 cells. We also investigated the relationship between iNOS expression and nuclear factor kappa B (NF-${\kappa}B$) activation. MEAD inhibited $I{\kappa}B{\alpha}$ degradation and NF-${\kappa}B$ translocation from the cytosol to the nucleus in LPS-induced RAW264.7 cells without significant cytotoxic effects, as confirmed by MTT assay. These results suggest that MEAD inhibits anti-inflammatory iNOS expression, which might be related to the elimination of peroxyl radicals and thus the inhibition of $I{\kappa}B{\alpha}$-mediated NF-${\kappa}B$ signal transduction.

$PKC{\eta}$ Regulates the $TGF{\beta}3$-induced Chondrogenic Differentiation of Human Mesenchymal Stem Cell

  • Ku, Bo Mi;Yune, Young Phil;Lee, Eun Shin;Hah, Young-Sool;Park, Jae Yong;Jeong, Joo Yeon;Lee, Dong Hoon;Cho, Gyeong Jae;Choi, Wan Sung;Kang, Sang Soo
    • 한국발생생물학회지:발생과생식
    • /
    • 제17권4호
    • /
    • pp.299-309
    • /
    • 2013
  • Transforming growth factor (TGF) family is well known to induce the chondrogenic differentiation of mesenchymal stem cells (MSC). However, the precise signal transduction pathways and underlying factors are not well known. Thus the present study aims to evaluate the possible role of C2 domain in the chondrogenic differentiation of human mesenchymal stem cells. To this end, 145 C2 domains in the adenovirus were individually transfected to hMSC, and morphological changes were examined. Among 145 C2 domains, C2 domain of protein kinase C eta ($PKC{\eta}$) was selected as a possible chondrogenic differentiation factor for hMSC. To confirm this possibility, we treated $TGF{\beta}3$, a well known chondrogenic differentiation factor of hMSC, and examined the increased-expression of glycosaminoglycan (GAG), collagen type II (COL II) as well as $PKC{\eta}$ using PT-PCR, immunocytochemistry and Western blot analysis. To further evaluation of C2 domain of $PKC{\eta}$, we examined morphological changes, expressions of GAG and COL II after transfection of $PKC{\eta}$-C2 domain in hMSC. Overexpression of $PKC{\eta}$-C2 domain induced morphological change and increased GAG and COL II expressions. The present results demonstrate that $PKC{\eta}$ involves in the TGF-${\beta}3$-induced chondrogenic differentiation of hMSC, and C2 domain of $PKC{\eta}$ has important role in this process.

Construction of Mammalian Cell Expression Vector for pAcGFP-bFLIP(L) Fusion Protein and Its Expression in Follicular Granulosa Cells

  • Yang, Run Jun;Li, Wu Feng;Li, Jun Ya;Zhang, Lu Pei;Gao, Xue;Chen, Jin Bao;Xu, Shang Zhong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권3호
    • /
    • pp.401-409
    • /
    • 2010
  • FLICE inhibitory protein (FLIP) is one of the important anti-apoptotic proteins in the Fas/FasL apoptotic path which has death effect domains, mimicking the pro-domain of procaspase-8. To reveal the intracellular signal transduction molecules involved in the process of follicular development in the bovine ovary, we cloned the c-FLIP(L) gene in bovine ovary tissue with the reverse transcription polymerase chain reaction (RT-PCR), deleted the termination codon in its cDNA, and directionally cloned the amplified c-FLIP(L) gene into eukaryotic expression vector pAcGFP-Nl, including AcGFP, and successfully constructed the fusion protein recombinant plasmid. After identifying by restrictive enzyme BglII/EcoRI and sequencing, pAcGFP-bFLIP(L) was then transfected into follicular granulosa cells, mediated by Lipofectamine 2000, the expression of AcGFP observed and the transcription and expression of c-FLIP(L) detected by RT-PCR and Western blot. The results showed that the cattle c-FLIP(L) was successfully cloned; the pAcGFPbFLIP(L) fusion protein recombinant plasmid was successfuly constructed by introducing a BglII/EcoRI cloning site at the two ends of the c-FLIP(L) open reading frame and inserting a Kozak sequence before the start codon. AcGFP expression was detected as early as 24 h after transfection. The percentage of AcGFP positive cells reached about 65% after 24 h. A 1,483 bp transcription was amplified by RT-PCR, and a 83 kD target protein was detected by Western blot. Construction of the pAcGFP-bFLIP(L) recombinant plasmid should be helpful for further understanding the mechanism of regulation of c-FLIP(L) on bovine oocyte formation and development.

Cloning and Expression of FSHb Gene and the Effect of $FSH{\beta}$ on the mRNA Levels of FSHR in the Local Chicken

  • Zhao, L.H.;Chen, J.L.;Xu, H.;Liu, J.W.;Xu, Ri Fu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권3호
    • /
    • pp.292-301
    • /
    • 2010
  • Follicle-stimulating hormone (FSH) is a pituitary glycoprotein hormone that is encoded by separate alpha- and betasubunit genes. It plays a key role in stimulating and regulating ovarian follicular development and egg production in chicken. FSH signal transduction is mediated by the FSH receptor (FSHR) that exclusively interacts with the beta-subunit of FSH, but characterization of prokaryotic expression of the FSHb gene and its effect on the expression of the FSHR gene in local chickens have received very little attention. In the current study, the cDNA fragment of the FSHb gene from Dagu chicken was amplified using reverse transcription polymerase chain reaction (RT-PCR), and inserted into the pET-28a (+) vector to construct the pET-28a-FSHb plasmid. After expression of the plasmid in E. coli BL21 (DE3) under inducing conditions, the recombination protein, $FSH{\beta}$ subunit, was purified and injected into the experimental hens and the effect on the mRNA expression levels of the FSHR gene was investigated. Sequence comparison showed that the coding region of the FSHb gene in the local chicken shared 99%-100% homology to published nucleotides in chickens; only one synonymous nucleotide substitution was detected in the region. The encoded amino acids were completely identical with the reported sequence, which confirmed that the sequences of the chicken FSHb gene and the peptides of the $FSH{\beta}$ subunit are highly conserved. This may be due to the critical role of the normal function of the FSHb gene in hormonal specificity and regulation of reproduction. The results of gene expression revealed that a recombinant protein with a molecular weight of about 19 kDa was efficiently expressed and it was identified by Western blotting analysis. After administration of the purified $FSH{\beta}$ protein, significantly higher expression levels were demonstrated in uterus, ovary and oviduct samples (p<0.05). These observations suggested that the expressed $FSH{\beta}$ protein possesses biological activity, and has a potential role in regulation of reproductive physiology in chickens.