• Title/Summary/Keyword: Signal Propagation model

Search Result 215, Processing Time 0.026 seconds

Modeling and Analysis of a Ray Tracing Method for Non-Destructive Testing for Internal Defects (광선추적법을 이용한 비파괴 내부 결함 모델 및 해석)

  • Kim, Teak Gu;Kim, Joohan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.75-81
    • /
    • 2015
  • Modeling and analysis using a ray tracing method for internal defects were described. Reflection and refraction of rays on the interface of defects were modeled using the Harvey model and the Lambertian model. The diffraction on the interface of defects affected the incoming signals and it could evaluate any defects in the matter and its signal would be analyzed with the ray tracing simulation. The simulation results were compared with actual detecting signals and the ray tracing model was shown in good agreement with experimental data. This method has a possibility to be used as wave propagation modeling in non-destructive testing.

Ultrasonic Wave Propagation Analysis for Damage Detection in Heterogeneous Concrete Materials (콘크리트 내부결함 탐지를 위한 초음파 전파 해석)

  • Jung, Hwee Kwon;Rhee, Inkyu;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.225-235
    • /
    • 2020
  • Ultrasonic investigation of damage detection has been widely used for non-destructive testing of various concrete structures. This study focuses on damage detection analysis with the aid of wave propagation in two-phase composite concrete with aggregate (inclusion) and mortar (matrix). To fabricate a realistic simulation model containing a variety of irregular aggregate shapes, the mesh generation technique using an image processing technique was proposed. Initially, the domains and boundaries of the aggregates were extracted from the digital image of a typical concrete cut-section. This enables two different domains: aggregates and mortar in heterogeneous concrete sections, and applied the grids onto these domains to discretize the model. Subsequently, finite element meshes are generated in terms of spatial and temporal requirements of the model size. For improved analysis results, all meshes are designed to be quadrilateral type, and an additional process is conducted to improve the mesh quality. With this simulation model, wave propagation analyses were conducted with a central frequency of 75 kHz of the Mexican hat incident wave. Several void damages, such as needle-shaped cracks and void-shaped holes, were artificially introduced in the model. Finally, various formats of internal damage were detected by implementing energy mapping based signal processing.

Analysis of Radio Attenuation Characteristics over 1 to 6 GHz for the Ground Material and Antenna Height in Roadway Open Environment (도로 개방 환경에서 바닥면 재질과 안테나 높이에 따른 1~6 GHz 전파 감쇄 특성 분석)

  • Choi, Jae-Won;Kim, Dong-Woo;Oh, Soon-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.397-404
    • /
    • 2020
  • In this paper, the propagating-wave attenuation characteristics at 1, 3, and 6 GHz in the open environment roadway where the ground-reflected wave dominates are analyzed through a propagation model simulation using a ray-tracing method and propagation measurements. Simulations has been performed by varying the ground material, the transmitting antenna height, and the receiving antenna height. The measurements were conducted using a directional transmission antenna installed at 10 m mast and a omnidirectional receiving antenna installed at 1.5 m mast in an open environment. Comparison of simulation and measurement results confirms that the null points having the weak signal strength depend on those parameters. Although this research has been investigated for the wide road, the derived result could be useful for installing the transmitter and receiver in the roadway open environment.

Development of Range-Dependent Ray Model for Sonar Simulator (소나 시뮬레이터용 거리 종속 음선 모델 개발)

  • Jung, Young-Cheol;Lee, Keunhwa;Seong, Woojae;Kim, Hyoung-Rok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.163-173
    • /
    • 2014
  • Sound propagation algorithm for a sonar simulator is required to run in real-time and should be able to model the range and depth dependence of the Korean ocean environments. Ray model satisfies these requirements and we developed an algorithm for range-dependent ocean environments. In this algorithm, we considered depth-dependence of sound speed through rays based on a rectangular cell method and layer method. Range-dependence of sound speed was implemented based on a split-step method in the range direction. Eigen-ray is calculated through an interpolation of ray bundles and Gaussian interpolation function was used. The received time signal of sonar was simulated by Fourier transform of eigen-ray solution in the frequency domain. Finally, for the verification of proposed algorithm, we compared the results of transmission loss with other validated models such as BELLHOP, SNUPE, KRAKEN and OASES, for the Pekeris waveguide, wedge, and deep ocean environments. As a result, we obtained satisfactory agreements among them.

Development of Effective Analytical Signal Models for Functional Microwave Imaging

  • Baang, Sung-Keun;Kim, Jong-Dae;Lee, Yong-Up;Park, Chan-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.471-476
    • /
    • 2007
  • Various active microwave imaging techniques have been developed for cancer detection for past several decades. Both the microwave tomography and the UWB radar techniques, constituting functional microwave imaging systems, use the electrical property contrast between normal tissues and malignancies to detect the latter in an early development stage. Even though promising simulation results have been reported, the understanding of the functional microwave imaging diagnostics has been relied heavily on the complicated numerical results. We present a computationally efficient and physically instructive analytical electromagnetic wave channel models developed for functional microwave imaging system in order to detect especially the breast tumors as early as possible. The channel model covers the propagation factors that have been examined in the previous 2-D models, such as the radial spreading, path loss, partial reflection and transmission of the backscattered electromagnetic waves from the tumor cell. The effects of the system noise and the noise from the inhomogeneity of the tissue to the reconstruction algorithm are modeled as well. The characteristics of the reconstructed images of the tumor using the proposed model are compared with those from the confocal microwave imaging.

Time-Domain Geoacoustic Inversion via Light Bulb Source Signal Matching (전구음원 신호를 이용한 시간영역 지음향학적 인자 역산)

  • Kim Kyungseop;Park Cheolsoo;Kim Seongil;Seong Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.334-342
    • /
    • 2005
  • In this Paper. a time-domain geoacoustic inversion was performed using the bulb signals measured during MがU. 04 experiment conducted in the East Sea of Korea in 2004. An obiective function was defined as a direct cross-correlation between the measured and the simulated signals in time domain. The ray theory was used to model the wave propagation in time domain and optimizations were Performed using VFSA (very fast simulated annealing) algorithm. Comparison of inversion results with those from transmission loss matching (an accompanying paper in this issue of the Journal of the Acoustical Society of Korea) shows that Parameters are consistently inverted. Direct time series comparisons between the measured signals and the simulated signals are Presented based on inversion results.

Implementation of the Adaptive-Neuro Controller of Industrial Robot Using DSP(TMS320C50) Chip (DSP(TMS320C50) 칩을 사용한 산업용 로봇의 적응-신경제어기의 실현)

  • 김용태;정동연;한성현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.38-47
    • /
    • 2001
  • In this paper, a new scheme of adaptive-neuro control system is presented to implement real-time control of robot manipulator using Digital Signal Processors. Digital signal processors, DSPs, are micro-processors that are particularly developed for fast numerical computations involving sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of therir prices. These features make DSPs a viable computational tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust perfor-mance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method.The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for the implementation of real-time control of robot system by the simulation and experi-ment.

  • PDF

Comparison of artificial intelligence models reconstructing missing wind signals in deep-cutting gorges

  • Zhen Wang;Jinsong Zhu;Ziyue Lu;Zhitian Zhang
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.75-91
    • /
    • 2024
  • Reliable wind signal reconstruction can be beneficial to the operational safety of long-span bridges. Non-Gaussian characteristics of wind signals make the reconstruction process challenging. In this paper, non-Gaussian wind signals are converted into a combined prediction of two kinds of features, actual wind speeds and wind angles of attack. First, two decomposition techniques, empirical mode decomposition (EMD) and variational mode decomposition (VMD), are introduced to decompose wind signals into intrinsic mode functions (IMFs) to reduce the randomness of wind signals. Their principles and applicability are also discussed. Then, four artificial intelligence (AI) algorithms are utilized for wind signal reconstruction by combining the particle swarm optimization (PSO) algorithm with back propagation neural network (BPNN), support vector regression (SVR), long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM), respectively. Measured wind signals from a bridge site in a deep-cutting gorge are taken as experimental subjects. The results showed that the reconstruction error of high-frequency components of EMD is too large. On the contrary, VMD fully extracts the multiscale rules of the signal, reduces the component complexity. The combination of VMD-PSO-Bi-LSTM is demonstrated to be the most effective among all hybrid models.

Accuracy Enhancement for UWB Indoor Positioning Using Ray Tracing (광선 추적법에 의한 초광대역 실내 위치인식의 성능 개선 방법)

  • Jo, Yung-Hoon;Lee, Joon-Yong;Ha, Dong-Heon;Kang, Shin-Hoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.921-926
    • /
    • 2006
  • The Presence of a line-of-sight(LoS) blockage can degrade the UWB positioning accuracy for two reasons. Firstly, it makes estimation of the time of arrival(ToA) of the direct path signal difficult by complicating the multipath structure of the propagation channel. Secondly, the higher dielectric constant of the LoS blocking material than that of free space introduces excess propagation delay which will bias the range estimation. In this paper, methods based on ray tracing to reduce the ranging error resulting from the second reason are Posed. We take two different approaches; a statistical approach and a map-aided method. In the statistical approach, we establish a conditional distribution of the excess propagation delay caused by LoS blockages using a ray tracing technique. The lo6wer bound of the ranging performance based on this model is estimated. Ine ray tracing method is also used for the map-aided ToA positioning approach. UWB propagation measurement data taken in an office environment is used to examine the performance of this method.

A Statistical Model for the Ultra-Wide Bandwidth Indoor Apartment Channel (실내 아파트 환경에서의 통계적 UWB 채널 모델)

  • Park Jin-Hwan;Lee Sang-Hyup;Bang Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.9 s.339
    • /
    • pp.19-28
    • /
    • 2005
  • We establish a statistical model for the ultra-wide bandwidth (UMB) indoor channel based on over 2000 frequency response measurements campaign in a Practical apartment. The approach is based on the investigation of the statistical properties of the multipath profiles measured in different place with different rooms. Based on the experimental results, a characterization of the propagation channel from theoretic view point is described. Also we describe a method for measurement of the channel impulse response and channel transfer function. Using the measured data, the authors compares channel impulse responses obtained from time-domain and channel transfer functions obtained from frequency-domain with statistical path loss model. The bandwidth of the signal used in this experiment is from 10MHz to 8.01 GHz. The time-domain results such as maximum excess delay, men excess delay and ms delay spread are presented. As well as, omni-directional biconical antenna were used for transmitter and receiver In addition, measurements presented here support m channel model including the antenna characteristics.