• Title/Summary/Keyword: Signal Evaluation

Search Result 1,921, Processing Time 0.042 seconds

Development of Data Acquisition System to Obtain Vessel and Weather Information in Around Mokpo Harbor Bridge (목포대교 주변의 선박 항행 정보 및 기상 정보 획득 시스템 개발)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This paper describes the development of Data Acquisition System (DAS) to obtain the vessel and weather information needing to evaluate collision risks levels between Mokpo harbor bridge and passing vessels. DAS consists of Signal Receiving and Processing Unit to obtain the data sets of passing vessels and weather status, Networking Unit to transmit and distribute the acquisition data sets and Data Management Unit. Through the field tests on the deck of shuttle car ferry between Mokpo Port Passenger Terminal and An-Jua island, Sinan-Gun, we found that the DAS can provide useful data sets for adequate the collision risk evaluation. In addition, the noise-like data sets appeared in the weather data can be suppressed fully using 5-th order Butterworth digital filter.

Development of On-line Performance Diagnostic Program of a Helicopter Turboshaft Engine

  • Kong, Chang-Duk;Koo, Young-Ju;Kho, Seong-Hee;Ryu, Hye-Ok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.34-42
    • /
    • 2009
  • Gas turbine performance diagnostics is a method for detecting, isolating and quantifying faults in gas turbine gas path components. On-line precise fault diagnosis can promote greatly reliability and availability of gas turbine in real time operation. This work proposes a GUI-type on-line diagnostic program using SIMULINK and Fuzzy-Neuro algorithms for a helicopter turboshaft engine. During development of the diagnostic program, a look-up table type base performance module are used for reducing computer calculating time and a signal generation module for simulating real time performance data. This program is composed of the on-line condition monitoring program to monitor on-line measuring performance condition, the fuzzy inference system to isolate the faults from measuring data and the neural network to quantify the isolated faults. Evaluation of the proposed on-line diagnostic program is performed through application to the helicopter engine health monitoring.

Computer Simulation and Control performance evaluation of Ultra Precision Positioning Apparatus using Piezo Actuator (Piezo Actuator를 이용한 초정밀 위치결정기구의 Computer Simulation 및 제어 성능평가)

  • 김재열;김영석;곽이구;한재호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.118-122
    • /
    • 2000
  • Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. For composition of this technology, the development of system with high speed and high resolution is needed. At start point and end position vibration must be repressed on this system for composition of position control. This vibration is arisen nose, is increased setting time, is reduced accuracy. Especially, repressed for the lead with high speed. The small actuator with high speed and high resolution is need to repression against this residual vibration. This actuator is, for example, piezo actuator, piezoelectric material that converting from electronic signal to mechanical force is adequate material, beacause of control of control to position and force. In this study, piezo electric material is used to actuator, ultra precision positioning apparatus with stage of hinge structure is designed, simulation is performed, control performance is tested by producing apparatus. For easy usage and stability in industrial field, we perform to simulation and to position control test by digital PID controller.

  • PDF

Evaluation of Phase Calibration Performance with KVN

  • Jung, Dawoon;Sohn, Young-Jong;Byun, Do-Young;Jung, Taehyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.36.2-36.2
    • /
    • 2016
  • In mm-VLBI, the quality of observation data is largely affected by atmospheric effect. The most challenging matter is that the phase of correlator output fluctuates rapidly resulting from a variation of atmospheric propagation delay. Consequently, it is demanding to achieve high Signal-to-Noise ratio by integrating data in time domain before calibrating atmospheric delay. However, Korean VLBI Network (KVN) has a unique system to make a 4-frequency (22/43/86/129 GHz) simultaneous observation in mm-wavelength and Frequency Phase Transfer (FPT) calibration technique has effectively removed atmospheric delay in the simultaneous multi-frequency observation of the KVN. For astrometric and astrophysical studies, we evaluated the FPT performance of KVN in various observing conditions. Using the total 38 bright AGNs, we have compared atmospheric conditions such as ground-based weather information, system temperature, atmospheric delay with the calibration results of FPT at 22/43/86/129 GHz during the five experiments in 2013, and quantified its performance in terms of coherence function and Allan variance. We present the analysis result of the relation between the FPT performance and observing conditions.

  • PDF

Block Error Performance Evaluation of DS-CDMA System with Combined Techniques in Mobile Communication Channel

  • Kang, Heau-Jo;Roh, Jae-Sung;Cho, Sung-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1234-1240
    • /
    • 2002
  • In this paper, we analyze the block error performance of the CDMA system, whose information data are spread spectrum with PN sequences, and the chip signals are modulated with BPSK signal, combining MRC(Maximum Ratio Combine) diversity techniques with repetition transmission, FEC(Forward Error Correction) code in mobile communication channel which is characterized by Nakagami fading. As a results of study, the coding techniques provide more efficient improvement than a diversity techniques, but coding techniques are required the adding bandwidth as many coding rate. Also, when the system is combined MRC diversity techniques with coding techniques, the amount of improvement is dramatically increased.

A System IC for Controlling the Fire Prevention (화재방지제어 시스템 IC)

  • Kim, Byung-Cheul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.737-746
    • /
    • 2009
  • In this study, we have developed one chip system IC for preventing the overload, detecting an abnormal conditions, and controlling the fire prevention in the intelligent home appliances. For the purpose, a circuit detectable an electric leak for preventing an electric shock, and a circuit detectable arc that has effect directly on the fire are designed. The circuits designed on every block are verified by comparing simulation with bread-boarding using a standard transistors. The system IC is fabricated by using 34 V 2 metal $1.5{\mu}m$ bipolar transistor process from evaluation results. The electrical performances of IC application circuits and the system IC equipped on PCB board are evaluated. It is confirmed that the system IC is well operated for arc and ground fault(GF) signal.

An Adaptive FEC Code Control Algorithm for Mobile Wireless Sensor Networks

  • Ahn Jong-Suk;Hong Seung-Wook;Heidemann John
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.489-498
    • /
    • 2005
  • For better performance over a noisy channel, mobile wireless networks transmit packets with forward error correction (FEC) code to recover corrupt bits without retransmission. The static determination of the FEC code size, however, degrades their performance since the evaluation of the underlying channel state is hardly accurate and even widely varied. Our measurements over a wireless sensor network, for example, show that the average bit error rate (BER) per second or per minute continuously changes from 0 up to $10^{-3}$. Under this environment, wireless networks waste their bandwidth since they can't deterministically select the appropriate size of FEC code matching to the fluctuating channel BER. This paper proposes an adaptive FEC technique called adaptive FEC code control (AFECCC), which dynamically tunes the amount of FEC code per packet based on the arrival of acknowl­edgement packets without any specific information such as signal to noise ratio (SNR) or BER from receivers. Our simulation experiments indicate that AFECCC performs better than any static FEC algorithm and some conventional dynamic hybrid FEC/ARQ algorithms when wireless channels are modeled with two-state Markov chain, chaotic map, and traces collected from real sensor networks. Finally, AFECCC implemented in sensor motes achieves better performance than any static FEC algorithm.

Least mean absolute third (LMAT) adaptive algorithm:part II. performance evaluation of the algorithm (최소평균절대값삼승 (LMAT) 적응 알고리즘: Part II. 알고리즘의 성능 평가)

  • 김상덕;김성수;조성호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2310-2316
    • /
    • 1997
  • This paper presents a comparative performance analysis of the stochastic gradient adaptive algorithm based on the least mean absolute third (LMAT) error criterion with other widely-used competing adaptive algorithms. Under the assumption that the signals involved are zero-mean, wide-sense stationary and Gaussian, approximate expressions that characterize the steady-state mean-squared estimation error of the algorithm is dervied. The validity of our derivation is then confirement by computer simulations. The convergence speed is compared under the condition that the LMAT and other competing algorithms converge to the same value for the mean-squared estimation error in the stead-state, and superior convergence property of the LMAT algorithm is observed. In particular, it is shown that the LMAT algorithm converges faster than other algorithms even through the eignevalue spread ratio of the input signal and measurement noise power change.

  • PDF

Proposal and Evaluation of Ultra High Speed Wireless Cell Backbone Networks (도시형 초고속 무선통신 셀백본망의 제안 및 평가)

  • 신천우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2B
    • /
    • pp.151-157
    • /
    • 2004
  • In this paper, we investigated ultra high speed wireless communication cell backbone net of city using of wireless communication transceiver for millimeter wave band. A new type of 60GHz wave band wireless transceiver using NRD waveguide. This 60㎓ transceiver has excellent signal's absorption characteristics of oxygen molecule than the other millimeter wave bands. We constructed to wireless networks interval within 500m to 3km on wireless backbone node using 60GHz transceivers, and did it so that city type wireless communication cell backbone networks of 155.52MbpsATM(OC-3) may be possible. Therefore, if use transceiver, it is possible that city type ultra high speed wireless communication cell backbone networks construction of 100Mbps, 155.52Mbps, 622Mbps, 1Gbps, and 1.2Gbps degrees.

Design of a Portable Activity Monitoring System (휴대용 활동 상태 모니터링 시스템의 설계)

  • Lee, Seung-Hyung;Park, Ho-Dong;Yoon, Hyung-Ro;Lee, Kyung-Joung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.1
    • /
    • pp.32-38
    • /
    • 2002
  • This paper describes a development of a portable physical activity monitoring system using two accelerometers to quantify physical activity. The system hardware consists of two piezoresistive accelerometers, amplifiers with gain of 30, lowpass filters with cut-off frequency of 15Hz, offset control circuits, one-chip microcontroller and flash memory card. In order to evaluate the performance of the system we acquired 3 channel data at 32 sample/sec from body-fixed accelerometers in chest and right upper leg. And then the acquired data were processed by MatLab on personal computer. We tried to distinguish not only fundamental actions which are steady-state activities such as standing, sitting, and lying but also dynamic activities with walking, up a stairway, down a stairway, and running. Five subjects participated the evaluation process which compare the video data with the measured data. As a result, the activity classification rate of 90.6% on average was obtained. Overall results showed that the steady-state activities could be classified from the low component of 3-axis acceleration signal and dynamic activities could be distinguished from frequency analysis using wavelet transform and FFT. Finally, we could find that this system can be applied to acquire and analyze the static and dynamic physical activity data.