• 제목/요약/키워드: Sieves calibration

검색결과 2건 처리시간 0.016초

Precise Test Sieves Calibration Method Based on Off-axis Digital Holography

  • Abdelsalam, Dahi Ghareab;Baek, Byung-Joon;Kim, Dae-Suk
    • Journal of the Optical Society of Korea
    • /
    • 제15권2호
    • /
    • pp.146-151
    • /
    • 2011
  • We describe, throughout a Mach-Zehnder interferometric configuration, a new test sieves calibration method based on off-axis digital holography. The experiment is conducted on a test sieve of square openings. The nominal sieve opening is 1.00 mm with maximum individual opening of 1.14 mm in size. The recorded off-axis hologram is numerically processed using Fresnel transforms to obtain an object wave (amplitude and phase). From the reconstructed phase, the average size of the illuminated openings has been measured precisely. The proposed method can provide a real time solution for calibrating test sieves very precisely and with moderate accuracy.

Uniform large scale cohesionless soil sample preparation using mobile pluviator

  • Jamil, Irfan;Ahmad, Irshad;Ullah, Wali;Junaid, Muhammad;Khan, Shahid Ali
    • Geomechanics and Engineering
    • /
    • 제28권5호
    • /
    • pp.521-529
    • /
    • 2022
  • This research work deals with the development of air pluviation method for preparing uniform sand specimens for conducting large scale laboratory testing. Simulating real field conditions and to get reliable results, air pluviation method is highly desirable. This paper presents a special technique called air pluviation or sand raining technique for achieving uniform relative density. The apparatus is accompanied by a hopper, shutters with different orifice sizes and numbers and set of sieves. Before using this apparatus, calibration curves are drawn for relative density against different height of fall (H) and shutter sizes. From these calibration curves, corresponding to the desired relative density of 60%, the shutter size of 13mm and height of fall of 457.2 mm, are selected and maintained throughout the pluviation process. The density obtained from the mobile pluviator is then verified using the Dynamic Cone Penetrometer (DCP) test where the soil is poured in the box using defined shutter size and fall height. The results obtained from the DCP test are averaged as 60±0.5 which was desirable. The mobile pluviator used in this research is also capable of obtaining relative densities up to 90%. The instrument is validated using experimental and numerical approach. In numerical study, Plaxis 3D software is used in which the soil mass is defined by 10-Node tetrahedral elements and 6-Node plate is used to simulate plate behavior in the validation phase. The results obtained from numerical approach were compared with that of experimental one which showed very close correlation.