• Title/Summary/Keyword: Sideband

Search Result 112, Processing Time 0.028 seconds

테레비젼 신호중단에 있어 화질에 영향을 주는 요인에 관한 연구

  • 김원후
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.1 no.1
    • /
    • pp.23-31
    • /
    • 1976
  • When Television signal of VHF and UHF channel is retransmitted at the relay system with 6MHz Bandwidth including video and aural signals, the image is often affected with the unnatural changes of output amplitude frequency response within ttle region of dual sideband near to the carrier frequency. These phenomena are caused by the unnecessary lower sideband due to the spurious emission at the local oscillator, the nonlinear distortion in the linear amplifier, the intermoudulation distortion with the components of neighboring signal, the AM-PM conversion, and the envelope delay distortion. From the output characteristics, considering above results, the chief cause is caused by nonlinear response and has an effect on the bias states. Finally, it is confirmed that the effects on neighboring signal appear high in case of Down conversion than Up conversion and obtained the method for reducing the effects on the system.

  • PDF

Electromechanical Characteristics of a Squirrel Cage Induction Motor due to Broken Rotor Bars and Rotor Eccentricity (회전자 바 개방과 회전자 편심에 의한 단삼 유도 전동기의 전기 및 기계적 특성 해석)

  • Park, Sang-Jin;Jang, Jeong-Hwan;Jang, Geon-Hui;Lee, Yong-Bok;Kim, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.425-433
    • /
    • 2002
  • This research investigates the electromechanical characteristics of a sing1e-phase squirrel cage induction motor due to broken rotor bars and rotor eccentricity. Numerical analysis is performed by solving the nonlinear time-stepping finite element equation coupled with the magnetic field equation, circuit equation and mechanical equation of motion. It shows that the asymmetry of magnetic flux due to the broken rotor bars and rotor eccentricity introduce a change in the stator current, torque, speed, magnetic force and vibration of a rotor at the same time. However, even in the existence of rotor eccentricity, 3 broken rotor bar introduces a dominant change in the magnetic force and rotor displacement, i.e., beating phenomenon in time domain and sideband frequencies in frequency spectra, respectively.

Depth location extraction and three-dimensional image recognition by use of holographic information of an object (홀로그램 정보를 이용한 깊이위치 추출과 3차원 영상인식)

  • 김태근
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.51-57
    • /
    • 2003
  • The hologram of an object contains the information of the object's depth distribution as well as the depth location of the object. However these pieces of information are blended together as a form of fringe pattern. This makes it hard to extract the depth location of the object directly from the hologram. In this paper, I propose a numerical method which separates the depth location information from the single-sideband hologram by gaussian low-pass filtering. The depth location of the object is extracted by numerical analysis of the filtered hologram. The hologram at the object's depth location is recovered by the extracted depth location.

Transmission Performance of 40 Gb/s PM Duobinary Signals due to Fiber Nonlinearities in DWDM Systems Using VSB Filtering Techniques

  • Jang, Ho-Deok;Kim, Kyoung-Soo;Lee, Jae-Hoon;Jeong, Ji-Chai
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.354-360
    • /
    • 2009
  • We investigate theoretically the tolerance of 40 Gbps phase-modulated (PM) duobinary signals using a vestigial sideband (VSB) filter on impairments which occurred in dense wavelength-division multiplexing (DWDM) systems, compared to the conventional duobinary signals. Our simulation results show that PM duobinary signals can't have the gain on the spectral efficiency achieved by utilizing the VSB filtering technique. In order to increase the spectral efficiency, they indispensably require to be transmitted at the optimum bandwidth of multiplexer (MUX) and demultiplexer (DEMUX) since they are susceptible to inter-channel crosstalk. It is also shown that the PM duobinary modulation format has a large tolerance on self-phase modulation (SPM) and cross-phase modulation (XPM) under the condition which MUX and DEMUX have been tuned at an optimum bandwidth; it has 1.2 dB power penalty at the fiber launching power (FLP) of 15 dBm and the channel spacing of 50 GHz.

A NEXT GENERATION MULTI-BEAM FOCAL PLANE ARRAY RECEIVER OF TRAO FOR 86-115 GHZ BAND

  • Chung Moon-Hee;Khaikin Vladimir B.;Kim Hyo-Ryoung;Lee Chang-Hoon;Kim Kwang-Dong;Park Ki-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • The noise temperature of existing millimeter-wave receivers is already within two or three times quantum noise limit. One of practical ways to increase the observation speed of single dish radio telescope without longer integration time is use of multi-beam focal plane array receiver as demonstrated in several large single dish radio telescopes. In this context the TRAO (Taeduk Radio Astronomy Observatory), which operates a 143n Cassegrain radio telescope, is planning to develop a 4 x 4 beams focal plane array SIS receiver system for 86-115 GHz band. Even though millimeter-wave HEMT LNA-based receivers approach the noise temperature comparable to the SIS receiver at W-band, it is believed that the receiver based on SIS mixer seems to offer a bit more advantages. The critical part of the multi-beam array receiver will be sideband separating SIS mixers. Employing such a type of SIS mixer makes it possible to simplify the quasi-optics of receiver. Otherwise, an SSB filter should be used in front of the mixer or some sophisticated post-processing of observation data is needed. In this paper we will present a preliminary design concept and components needed for the development of a new 3 mm band multi-beam focal plane array receiver.

Laboratory study on the modulation evolution of nonlinear wave trains

  • Dong, G.H.;Ma, Y.X.;Zhang, W.;Ma, X.Z.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.189-203
    • /
    • 2012
  • New experiments focusing on the evolution characteristics of nonlinear wave trains were conducted in a large wave flume. A series of wave trains with added sidebands, varying initial steepness, perturbed amplitudes and frequencies, were physically generated in a long wave flume. The experimental results show that the increasing wave steepness, increases the speed of sidebands growth. To study the frequency and phase modulation, the Morlet wavelet transform is adopted to extract the instantaneous frequency of wave trains and the phase functions of each wave component. From the instantaneous frequency, there are local frequency downshifts, even an effective frequency downshift was not observed. The frequency modulation increases with an increase in amplitude modulation, and abrupt changes of instantaneous frequencies occur at the peak modulation. The wrapped phase functions show that in the early stage of the modulation, the phase of the upper sideband first diverges from that of the carrier waves. However, at the later stage, the discrepancy phase from the carrier wave transformed to the lower sideband. The phase deviations appear in the front of the envelope's peaks. Furthermore, the evolution of the instantaneous frequency exhibits an approximate recurrence-type for the experiment with large imposed sidebands, even when the corresponding recurrence is not observed in the Fourier spectrum.

Fatigue Crack Localization Using Laser Nonlinear Wave Modulation Spectroscopy (LNWMS)

  • Liu, Peipei;Sohn, Hoon;Kundu, Tribikram
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.419-427
    • /
    • 2014
  • Nonlinear features of ultrasonic waves are more sensitive to the presence of a fatigue crack than their linear counterparts are. For this reason, the use of nonlinear ultrasonic techniques to detect a fatigue crack at its early stage has been widely investigated. Of the different proposed techniques, laser nonlinear wave modulation spectroscopy (LNWMS) is unique because a pulse laser is used to exert a single broadband input and a noncontact measurement can be performed. Broadband excitation causes a nonlinear source to exhibit modulation at multiple spectral peaks owing to interactions among various input frequency components. A feature called maximum sideband peak count difference (MSPCD), which is extracted from the spectral plot, measures the degree of crack-induced material nonlinearity. First, the ratios of spectral peaks whose amplitudes are above a moving threshold to the total number of peaks are computed for spectral signals obtained from the pristine and the current state of a target structure. Then, the difference of these ratios are computed as a function of the moving threshold. Finally, the MSPCD is defined as the maximum difference between these ratios. The basic premise is that the MSPCD will increase as the nonlinearity of the material increases. This technique has been used successfully for localizing fatigue cracks in metallic plates.

Optical VSB Filtering of 12.5-GHz Spaced 64 × 12.4 Gb/s WDM Channels Using a Pair of Fabry-Perot Filters

  • Batsuren, Budsuren;Kim, Hyung Hwan;Eom, Chan Yong;Choi, Jin Joo;Lee, Jae Seung
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.63-67
    • /
    • 2013
  • We perform an optical vestigial sideband (VSB) filtering using a pair of Fabry-Perot (FP) filters. The transmittance curve of each FP filter is made to have sharp skirts using an offset between input and output coupling fibers. Moreover, the accurate periodicity of FP filters in the optical frequency domain enables the simultaneous VSB filtering of a large number of optical channels. With this VSB filtering technique, we transmit 12.5-GHz spaced $64{\times}12.4-Gb/s$ wavelength-division-multiplexing channels over a single-mode fiber up to 150 km without any dispersion compensations. When the channel spacing is reduced to 10 GHz, we achieve the spectral efficiency of 1 bit/s/Hz in conventional optical intensity modulation systems up to 125 km.

Single-balanced Direct Conversion Quadrature Receiver with Self-oscillating LMV

  • Nam-Jin Oh
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.122-128
    • /
    • 2023
  • This paper proposes two kinds of single-balanced direct conversion quadrature receivers using selfoscillating LMVs in which the voltage-controlled oscillator (VCO) itself operates as a mixer while generating an oscillation. The two LMVs are complementary coupled and series coupled to generate the quadrature oscillating signals, respectively. Using a 65 nm CMOS technology, the proposed quadrature receivers are designed and simulated. Oscillating at around 2.4 GHz frequency, the complementary coupled quadrature receiver achieves the phase noise of -28 dBc/Hz at 1KHz offset and -109 dBc/Hz at 1 MHz offset frequency. The other series coupled receiver achieves the phase noise of -31 dBc/Hz at 1KHz offset and -109 dBc/Hz at 1 MHz offset frequency. The simulated voltage conversion gain of the two single-balanced receivers is 37 dB and 45 dB, respectively. The double-sideband noise figure of the two receivers is 5.3 dB at 1 MHz offset. The quadrature receivers consume about 440 μW dc power from a 1.0-V supply.

Thirty-two-tupling frequency millimeter-wave generation based on eight Mach-Zehnder modulators connected in parallel

  • Xinqiao Chen;Siyuan Dai;Zhihan Li;Wenyao Ba;Xu Chen
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.194-204
    • /
    • 2024
  • A new method is proposed to generate a 32-tupling frequency millimeter wave (MMW) with eight Mach-Zehnder modulators (MZMs) connected in parallel. Theoretical analyses and simulation experiments are conducted. The optical sideband suppression ratio (OSSR) of the obtained ±16th order optical sidebands are 61.54 dB and 61.42 dB, and the radio frequency spurious suppression ratios (RFSSRs) of the generated 32-tupling frequency MMW are 55.52 dB and 55.27 dB based on the theoretical analysis and simulation experiments, respectively; these outcomes verified the feasibility of the new method. The main parameters used to affect the stability of the generated signal are the modulation index and extinction ratio of MZM. Their effects on the OSSR and RFSSR of the generated signals are investigated when they deviate from their designed values. Compared with the other proposed methods for the generation of 32-tupling frequency MMW by MZM, our method has the best spectral purity and stability, and it is expected to have important MMW over fiber applications.