DOI QR코드

DOI QR Code

Optical VSB Filtering of 12.5-GHz Spaced 64 × 12.4 Gb/s WDM Channels Using a Pair of Fabry-Perot Filters

  • Batsuren, Budsuren (Department of Electronic Engineering, Kwangwoon University) ;
  • Kim, Hyung Hwan (Department of Electronic Engineering, Kwangwoon University) ;
  • Eom, Chan Yong (Department of Electronic Engineering, Kwangwoon University) ;
  • Choi, Jin Joo (Department of Electronics Convergence Engineering, Kwangwoon University) ;
  • Lee, Jae Seung (Department of Electronic Engineering, Kwangwoon University)
  • Received : 2012.10.24
  • Accepted : 2013.01.24
  • Published : 2013.02.25

Abstract

We perform an optical vestigial sideband (VSB) filtering using a pair of Fabry-Perot (FP) filters. The transmittance curve of each FP filter is made to have sharp skirts using an offset between input and output coupling fibers. Moreover, the accurate periodicity of FP filters in the optical frequency domain enables the simultaneous VSB filtering of a large number of optical channels. With this VSB filtering technique, we transmit 12.5-GHz spaced $64{\times}12.4-Gb/s$ wavelength-division-multiplexing channels over a single-mode fiber up to 150 km without any dispersion compensations. When the channel spacing is reduced to 10 GHz, we achieve the spectral efficiency of 1 bit/s/Hz in conventional optical intensity modulation systems up to 125 km.

Keywords

References

  1. K. Yonenaga and N. Takachio, "A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems," IEEE Photon. Technol. Lett. 5, 949-951 (1993). https://doi.org/10.1109/68.238265
  2. L. Wu, M. Li, F. Zhang, Z. Y. Chen, L.-K. Chen, and A. S. Xu, "Fibre nonlinearity mitigation of OOK signals with MLSE utilising MZ filter for diverse VSB filtering," Electron. Lett. 46, 780-781 (2010). https://doi.org/10.1049/el.2010.0361
  3. H. Kim and A. H. Gnauck, "10 Gbit/s 177 km transmission over conventional singlemode fibre using a vestigial sideband modulation format," Electron. Lett. 37, 1533-1534 (2001). https://doi.org/10.1049/el:20011019
  4. E. G. Turitsyna, S. Webb, V. K. Mezentsev, and S. K. Turitsyn, "Novel design of FBG-based composite double notch VSB filter for DWDM systems," J. Lightwave Technol. 24, 3547-3552 (2006). https://doi.org/10.1109/JLT.2006.880607
  5. S. L. Jansen, R. H. Derksen, C. Schubert, X. Zhou, M. Birk, Weiske, C.-J. M. Bohn, D. van den Borne, P. M. Krummrich, M. Moller, F. Horst, B. J. Offrein, H. de Waardt, G. D. Khoe, and A. Kirstadter, "107-Gb/s full- ETDM transmission over field installed fiber using vestigial sideband modulation," in Proc. OFC (Anaheim Convention Center, Anaheim, California, USA, 2007), OWE3-1-OWE3-3.
  6. W. Idler, S. Bigo, Y. Frignac, B. Franz and G. Veith, "Vestigial side band demultiplexing for ultra-high capacity (0.64 bit/s/Hz) transmission of 128 ${\times}$ 40 Gb/s channels," in Proc. OFC (Anaheim Convention Center, Anaheim, California, USA, 2001), MM3-1-MM3-4.
  7. H. D. Jang, K. S. Kim, J. H. Lee, and J. C. Jeong, "Transmission performance of 40 Gb/s PM doubinary signals due to fiber nonlinearities in DWDM systems using VSB filtering techniques," J. Opt. Soc. Korea 13, 354-360 (2009). https://doi.org/10.3807/JOSK.2009.13.3.354
  8. C. X. Yu and D. T. Neilson, "Diffraction-grating-based (de) multiplexer using image plane transformations," IEEE J. Select. Topics Quantum Electron. 8, 1194-1201 (2002). https://doi.org/10.1109/JSTQE.2002.805977
  9. D. Qian, J. Yu, J. Hu, L. Zong, L. Xu, and T. Wang, "10 Gbit/s WDM-SSB-OFDM transmission over 1000 km SSMF using conventional DFB lasers and direct-detection," Electron. Lett. 44, 223-225 (2008). https://doi.org/10.1049/el:20083157
  10. Y. Tang and W. Shieh, "Coherent optical OFDM transmission up to 1 Tb/s per channel," J. Lightwave Technol. 27, 3511-3517 (2009). https://doi.org/10.1109/JLT.2009.2025055
  11. X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, "Demonstration of record sensitivities in optically preamplified receivers by combining PDM-QPSK and M-ary pulse-position modulation," J. Lightwave Technol. 30, 406-413 (2012). https://doi.org/10.1109/JLT.2011.2172915
  12. D. Y. Song and J. S. Lee, "Angle-tuned Fabry-Perot etalon filter having Gaussian transmittance curves," IEEE Photon. Technol. Lett. 12, 1186-1188 (2000). https://doi.org/10.1109/68.874230
  13. T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, "Forward error correction based on block turbo code with 3-bit soft decision for 10-Gb/s optical communication systems," IEEE J. Select. Topics Quantum Electron. 10, 376-386 (2004). https://doi.org/10.1109/JSTQE.2004.827846
  14. "Appendix A: forward error correction using 16-Byte interleaved RS(255 239) codecs, 03/2003," Interfaces for the optical transport network (OTN), ITU-T G.709/Y.1331.
  15. O. E. DeLange, "Optical heterodyne detection," IEEE Spectrum 5, 77-85 (1968).
  16. Y. S. Hurh, G. S. Hwang, J. Y. Jeon, K. G. Lee, K. W. Shin, S. S. Lee, K. Y. Yi, and J. S. Lee, "1-Tb/s (100 12.4 Gb/s) transmission of 12.5-GHz-spaced ultradense WDM channels over a standard single-mode fiber of 1200 km," IEEE Photon. Technol. Lett. 17, 696-698 (2005). https://doi.org/10.1109/LPT.2004.841002
  17. A. Tzanakaki, I. Zacharopoulos, D. Parcharidou, and I. Tomkos, "Performance study of modulation formats for 10-Gb/s WDM metropolitan area networks," IEEE Photon. Technol. Lett. 16, 1769-1771 (2004). https://doi.org/10.1109/LPT.2004.828380
  18. J. Kani, "Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems," IEEE J. Select. Topics Quantum Electron. 16, 1290-1297 (2010). https://doi.org/10.1109/JSTQE.2009.2035640
  19. B. W. Kang and C. H. Kim, "An amplified WDM-PON using broadband light source seeded optical sources and a novel bidirectional reach extender," J. Opt. Soc. Korea 15, 222-226 (2011). https://doi.org/10.3807/JOSK.2011.15.3.222
  20. H. J. Lee, "External optical modulator using a low-cost Fabry-Perot LD for multicasting in a WDM-PON," J. Opt. Soc. Korea 15, 227-231 (2011). https://doi.org/10.3807/JOSK.2011.15.3.227
  21. M. Suzuki and N. Edagawa, "Dispersion-managed highcapacity ultra-long-haul transmission," J. Lightwave Technol. 21, 916-929 (2003). https://doi.org/10.1109/JLT.2003.810098
  22. J. S. Milne, A. J. Keating, J. M. Dell, and L. Faraone, "MEMS -based tunable Fabry-Perot filters on silicon substrates," in Proc. IEEE Conf. on Optoelectronic and Microelectronic Materials and Devices (Sydney, Australia, 2008), pp. 174-180.
  23. D. Hays, A. Zribi, S. Chandrasekaran, S. Goravar, S. Maity, L. R. Douglas, K. Hsu, and A. Banerjee, "A hybrid MEMS -fiber optic tunable Fabry-Perot filter," J. Microelectromech. Syst. 19, 419-429 (2010). https://doi.org/10.1109/JMEMS.2009.2038351
  24. R. M. K. Chennakesava, M. S. Priya, M. Meenakshi, and A. R. Kalaiarasi, "Mems-based wide range tunable Fabry- Perot filter," in Proc. IEEE International Conference on Advances in Engineering, Science and Management (ICAESM 2012) (EGS Pillay Engineering College Nagapattinam, Tamil Nadu, India, 2012), pp. 266-268.

Cited by

  1. Joint Probability Density Functions for Direct-Detection Optical Receivers vol.18, pp.2, 2014, https://doi.org/10.3807/JOSK.2014.18.2.124
  2. Improvement of a Pound-Drever-Hall Technique to Measure Precisely the Free Spectral Range of a Fabry-Perot Etalon vol.19, pp.4, 2015, https://doi.org/10.3807/JOSK.2015.19.4.357
  3. Design of 10 GbE Optical Communication System Using Multi Carrier Generation Module vol.53, pp.11, 2016, https://doi.org/10.5573/ieie.2016.53.11.03
  4. Time-dependent Analysis of Optical Receivers Using Receiver Eigenmodes vol.17, pp.4, 2013, https://doi.org/10.3807/JOSK.2013.17.4.305
  5. Modified Manchester modulation format for high-speed optical transmission systems vol.12, pp.4, 2018, https://doi.org/10.1049/iet-opt.2018.0032