• 제목/요약/키워드: Side weir

검색결과 69건 처리시간 0.029초

삼천포 수역 죽방렴의 어구구조와 해수유동 특성 (Characteristics of Current Patterns and Structure of Bamboo Weir in Samchunpo Water Area)

  • 강경미;신현옥
    • 수산해양기술연구
    • /
    • 제38권1호
    • /
    • pp.69-78
    • /
    • 2002
  • In order to examine the directional suitability of the axis direction of the fishing gear against the current, the experiments were carried out at the bamboo weir in Samchunpo water area from January, 2000 to September, 2001 The results of the study are as follows: In the experimental fishing gear constructed in the "V" shape, the range between two reference piles located at the entrance was 2.5m. The direction of bamboo weir′s axis was 355.5$^{\circ}$ The length of the left wing and those from the reference pile to the starting point of a curve were 106.0m, 7.5m, respectively. The length of the right wing and those from the reference pile to the starting point of a curve were 79.0m, 10.0m, respectively. Depths around the left and right stone wall that drove the steel pile were 5.0~6.5m and 6.5~9.5m, respectively. Also, depths on the bamboo weir′s axis and around the sack were 7.0~8.0m and about 8.0m, respectively. The maximum height of stone walls at the point of the left wing, the right wing and around the sack on the bamboo weir\` axis were 3.0m, 4.7m and 4.0m, respectively, Widths of stone walls at the point of both of the wings and around the sack on the bamboo weir\`s axis were 10.0~l4.0m, 22.0~25.0m, respectively. The averaging current direction on ebb tide was measured two times and it was 169.2$^{\circ}$ but the direction had about a 6.3$^{\circ}$ difference from the bamboo weirs axis. The maximum current speed appeared two to three hours later from the time of high tide and the current speed over 80.0cm/s lasted during about two Hours on the ebb tide In the case of a straight type wing In the bamboo weir, the eddy out of the left wing was comparatively big and the current on the right side from the bamboo weir′s axis had a tendency in turning to the right wing side. But in the case of a curve type wing, the eddy and tendency reduced significantly. It was thought that the experimental fishing gear was set suitably from the result of this simulation.

천수 흐름 모의에서 불연속 지형에 따른 흐름 저항 (Flow Resistance by Discontinuous Topography in Simulating Shallow-water Flow)

  • 황승용
    • 대한토목학회논문집
    • /
    • 제39권1호
    • /
    • pp.175-181
    • /
    • 2019
  • 근사 Riemann 해법으로 흐름률을 계산할 때 Hwang의 기법을 이용하여 불연속 지형에 따른 흐름 저항으로서 계단에 따른 정수압, 추력, 벽 반사 등을 검토하였다. 광정 위어 실험과 비교했을 때 추력을 이용하여 모의한 결과가 셋 중에서 가장 우수하였다. 계단에 따른 추력을 고려한 Hwang의 기법을 측면 위어 실험에 적용하였으며, 실험 결과와 잘 일치함을 확인하였다. 기존 수심적분 모형에 비해 정확도 저하가 조금 있으나, 계산 시간을 약 20 %로 줄일 수 있어 감수할 만한 수준이었다.

저층수 배출식 가동보 설치에 따른 흐름특성 (The Flow Characteristic Variation by Installing a Movable Weir having Water Drainage Equipment on the Bottom)

  • 최계운;변성준;김영규;조상욱
    • 한국방재학회 논문집
    • /
    • 제8권3호
    • /
    • pp.117-122
    • /
    • 2008
  • 사람들은 수로 또는 하천에서 취수를 목적으로 하천을 횡단하는 보와 같은 수중 구조물을 설치하여 물을 임시 저류시켜 사용하는 방법을 이용하고 있으나, 구조물에 의하여 하천의 흐름이 정체되어 수질사고 및 홍수 등의 부작용이 발생하기도 한다. 본 연구에서는 다양한 가동보 중 저층수 배출식 공압식 가동보를 실험수로에 설치하여 가동보 설치각도 변화에 따른 흐름 영향을 분석하였으며, 저층수 배출을 위해 설치해 놓은 저층수 유입구에 따라 변화하는 흐름특성을 분석하였다. 분석 결과 보 설치 각도에 따라 저층수 배출장치로만 물을 배제시킬 경우 설치각도의 증가에 따라 유량은 점차 증가하며, 저층수 유입구의 유무 따른 흐름특성 변화는 유속의 경우 최대 21.9배 증가한 것을 확인할 수 있으며, 수위변화에는 크게 영향을 미치지 않는 것으로 나타났으나, 보 상류 부분에서 국부적으로 평균 이상의 수위 감소를 나타내고 있다.

횡월류형 강변저류지를 포함하는 하천수계에 대한 수리학적 계산모형 (Computational Model for Flow in River Systems Including Storage Pockets with Side Weirs)

  • 전경수;김진수;김원;윤병만
    • 한국수자원학회논문집
    • /
    • 제43권2호
    • /
    • pp.139-151
    • /
    • 2010
  • 횡월류식 강변저류지를 포함하는 하천수계의 흐름 모의를 위한 준2차원 부정류 계산모형을 수립하였다. 수립된 모형은 횡월류 흐름에 대해서는 수량보존에 관한 연속방정식 및 월류형 수위-유량 관계식을, 하도에 대해서는 1차원 St. Venant 방정식을 각각 지배방정식으로 하여 흐름을 모의하는 폐합형 계산모형이다. 수립된 모형을 현재 계획 중인 군남 홍수조절지부터 한강 합류 지점까지의 임진강 구간에 대하여 적용하였다. 횡월류 위어의 유량계수에 대한 민감도 분석 결과, 최대유량 및 수위의 저감효과는 유량계수에 관계없이 거의 일정한 것으로 나타났다. 수계 하류 측에 위치한 강변저류지일수록 배수영향이 커지므로 첨두 홍수위의 감소효과는 줄어드는 것으로 모의되었다. 강변저류지의 홍수저감 효과는 조도계수에 따라 크게 달라지며 횡월류 위어의 정부표고가 높을수록 조도계수에 따른 홍수조절 효과의 불확실성이 커지는 것을 알 수 있었다. 강변저류지의 설계를 위해서는 조도계수의 적절한 추정과정이 선행되어야 함은 물론이고, 추정된 조도계수의 불확실성을 감안하여 횡월류 위어의 정부표고를 결정하기 위한 방법의 개발이 필요할 것으로 판단된다.

취입모의 경제적 계획취입수심 산정방법에 대한 연구 (A Study on a Calculation Method of Economical Intake Water Depth in the Design of Head Works)

  • 김철기
    • 한국농공학회지
    • /
    • 제20권1호
    • /
    • pp.4592-4598
    • /
    • 1978
  • The purpose of this research is to find out mathemetically an economical intake water depth in the design of head works through the derivation of some formulas. For the performance of the purpose the following formulas were found out for the design intake water depth in each flow type of intake sluice, such as overflow type and orifice type. (1) The conditional equations of !he economical intake water depth in .case that weir body is placed on permeable soil layer ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } { Cp}_{3 }L(0.67 SQRT { q} -0.61) { ( { d}_{0 }+ { h}_{1 }+ { h}_{0 } )}^{- { 1} over {2 } }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { dcp}_{3 }L+ { nkp}_{5 }+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ] =0}}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } C { p}_{3 }L(0.67 SQRT { q} -0.61)}}}} {{{{ { ({d }_{0 }+ { h}_{1 }+ { h}_{0 } )}^{ - { 1} over {2 } }- { { 3Q}_{1 } { p}_{ 6} { { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{ 2}m' SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L }}}} {{{{+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 } L+dC { p}_{4 }L+(2 { z}_{0 }+m )(1-s) { L}_{d } { p}_{7 }]=0 }}}} where, z=outer slope of weir body (value of cotangent), h1=intake water depth (m), L=total length of weir (m), C=Bligh's creep ratio, q=flood discharge overflowing weir crest per unit length of weir (m3/sec/m), d0=average height to intake sill elevation in weir (m), h0=freeboard of weir (m), Q1=design irrigation requirements (m3/sec), m1=coefficient of head loss (0.9∼0.95) s=(h1-h2)/h1, h2=flow water depth outside intake sluice gate (m), b=width of weir crest (m), r=specific weight of weir materials, d=depth of cutting along seepage length under the weir (m), n=number of side contraction, k=coefficient of side contraction loss (0.02∼0.04), m2=coefficient of discharge (0.7∼0.9) m'=h0/h1, h0=open height of gate (m), p1 and p4=unit price of weir body and of excavation of weir site, respectively (won/㎥), p2 and p3=unit price of construction form and of revetment for protection of downstream riverbed, respectively (won/㎡), p5 and p6=average cost per unit width of intake sluice including cost of intake canal having the same one as width of the sluice in case of overflow type and orifice type respectively (won/m), zo : inner slope of section area in intake canal from its beginning point to its changing point to ordinary flow section, m: coefficient concerning the mean width of intak canal site,a : freeboard of intake canal. (2) The conditional equations of the economical intake water depth in case that weir body is built on the foundation of rock bed ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { nkp}_{5 }}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0 }}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{6 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{2 }m' SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0}}}} The construction cost of weir cut-off and revetment on outside slope of leeve, and the damages suffered from inundation in upstream area were not included in the process of deriving the above conditional equations, but it is true that magnitude of intake water depth influences somewhat on the cost and damages. Therefore, in applying the above equations the fact that should not be over looked is that the design value of intake water depth to be adopted should not be more largely determined than the value of h1 satisfying the above formulas.

  • PDF

횡월류위어에 의한 에너지변화 평가를 위한 실험연구 (An Experimental Study to Estimate the Energy Change by Side Weir)

  • 조홍제;윤영배
    • 대한토목학회논문집
    • /
    • 제31권1B호
    • /
    • pp.57-62
    • /
    • 2011
  • 하천에 설치되는 수공구조물은 유수흐름, 소류력 등에 변화를 주어 하천재해의 원인이 된다. 따라서 본 연구에서는 홍수통제 등의 목적으로 설치되는 횡월류위어에 의한 에너지변화와 소류력변화를 수리실험을 통하여 분석하였다. 실험수로는 사다리꼴 형태, 수로경사는 0.1%-1.0% 범위, 유량은 25 l/sec의 조건으로 횡월류위어 설치 전 후에 대한 실험을 수행하였다. 실험결과, 경사가 커질수록 비에너지비가 증가하였고, 경사가 1.0%에서는 비에너지비가 1보다 큰 지점이 나타났다. 소류력비는 경사가 커질수록 작아지지만, 소류력비가 1보다 큰 구간은 하류방향으로 더 넓게 분포하는 것으로 나타났고, 계산된 소류력비는 약 1.3이다.

측면 위어가 있는 수로의 천수 흐름에 대한 2차원 수치모의 (2D Numerical Simulations for Shallow-water Flows in the Channel with a Side Weir)

  • 황승용
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.337-337
    • /
    • 2015
  • 홍수 저감, 생태계 복원, 위락 등 다양한 목적의 충족을 위해 강변에 저류지, 즉 다목적 유수지(detention basin)를 조성하는 사례가 나타나고 있다. 하천에서 홍수의 발생으로 수위가 어떤 기준보다 높아지면, 흐름의 일부를 돌려 저류지로 보냄으로써 본류의 부담을 덜 수 있다. 이때, 흐름의 분기를 위해 설치되는 하천구조물 중 하나가 측면 위어(side weir) 또는 횡월류 위어(side discharge/overflow weir)이다. 하천의 계획과 설계에서 위어가 적용될 때, 위어에 대한 수위-유량 관계, 즉 그 형식과 제원에 적합한 유량계수(discharge coefficient)의 결정이 관건이 된다. 일반적인 위어와 달리 흐름 양상이 복잡한 측면 위어의 경우, 이론과 실제의 괴리가 아직까지 해소되지 않아 실물 또는 3차원 수치 모형을 이용한 시험으로 수위-유량 관계를 수립할 필요가 있다. 이렇게 결정된 수위-유량 관계는 1차원 또는 수심적분 2차원 모형의 내부 또는 외부 경계로 사용되며, 본류의 수위 증감에 따른 측면 위어의 횡월류량을 통해 저류지의 홍수 조절 능력을 평가할 수 있다. 이 연구에서는, 측면 위어의 수위-유량 관계가 알려지지 않더라도, 저류지에 의한 홍수 조절 효과를 평가할 수 있는 2차원 수치모의에 대해 검토하였다. 수치해법으로서 2차원 천수방정식에 대해 유한체적법을 적용하고, 흐름률(flux)의 정확한 계산을 위해 근사 Riemann 해법을 도입하였다. 먼저, 측면 위어가 없는 실험 조건에 대해 수로 내 한 측선에서 측정된 수위와 유량을 모의 결과와 비교하여 모형을 검증하였다. 이때, 경계조건으로 상류 끝에 측정 유량을, 하류 끝에 측정 수위를 부여하였으며, Manning의 조도계수를 0.014로 설정하였다. 또한, 측면 위어가 설치된 수로에 대해 계산 영역을 340개의 삼각형 격자로 분할하고 측면 위어가 없는 경우와 동일한 조건을 두어 모의하였다. 측면 위어의 하류에 위치한 측선에서 측정치에 대한 평균 제곱근(root mean square) 오차가 수위에 대해 1.9 mm, 유량에 대해 $2.2{\ell}/s$로서 그림과 같이 모의 결과는 실험의 그것과 잘 일치하였다. 이로써, 측면 위어에 대한 수위-유량 관계의 수립을 위한 실물 모형 시험 없이 수심적분 2차원 수치모의를 통해 저류지의 홍수 조절 효과를 평가할 수 있음이 확인되었다.

  • PDF

청주 및 보은지방의 두수공홍수재해에 관한 조사연구(I) -부위별 재해발생율 및 재해발생기구를 중심으로- (A Study on the Damages of Head Works by the Storm Flood in the Area of Cheong Ju and Boeun -Emphasis on the Occurring Rate and Mechanism of Damage at Each Region of Head Works-)

  • 김기철;남성우
    • 한국농공학회지
    • /
    • 제24권1호
    • /
    • pp.23-30
    • /
    • 1982
  • The aim of this report is to analyze the Occurring rate of damage at each region of head works and to clear its damaged mechanism, centering around the destroyed situations of head works along both Musim and Bochong Rivers suffered from the storm flood occurred on July 22, 1980. The results obtained from the investigation of 25 head works taken for samples are summarized as follows. 1. The occurring rate of damage at each region of head works showed the largest number of 100 percentage in the revetment and protected riverbed work respectively, in the order of the next largest number, 68 percentage in weir body, 56 percentage in apron and 36 percentage in bank. 2. The destructive damage of revetment influenced largely on sweeping bank away, and destructive sufferings of weir body and protected bed work affected on the destructi on of apron, otherwise the destructive sufferings of apron reversely also acted on the- destruction of weirbody and protected bed work. In other hand, partial damage of weir body at the side of revetment is largely influenced by destructive sweeping away of bank. 3. It was showed that the destructive phenomena of weir body occurred largely at the part of concentrated flow and also had a deep relation with scoring by concentrated flow around upstream foundation of weir. 4. The suffered region of revetment is the down stream part just near weir body and the degree of damage is more severe at the curved part of bank that center of flow is concentrated.

  • PDF

천변저류지 홍수저감능력평가를 위한 하도-저류지연계모형의 개발 (Development of River-Reservoir Integrated Model for Flood Reduction Capacity Analysis of Off-Stream Reservoir)

  • 최성열;안태진
    • 한국방재학회 논문집
    • /
    • 제11권3호
    • /
    • pp.165-174
    • /
    • 2011
  • 본 연구의 목적은 하천의 홍수저감을 목적으로 설치하는 하천변 저류지의 홍수저감특성을 분석하기 위한 모형의 개발에 있다. 하천에 홍수가 발생하였을 경우에 하천변 저류지는 하천의 홍수첨두 일부를 분담하는 기능을 갖으며, 이는 제방의 일부를 낮춘 월류제를 통한 범람으로 가능하게 되며, 또한 범람된 물은 저류지 내에서 저류 하게 된다. 이러한 저류지가 갖는 홍수저감특성은 하천 홍수위, 월류제 제원(높이, 위치, 길이 등), 저류지의 수리거동 등에 의해 좌우되게 되므로, 본 연구에서는 이러한 일련의 물의 거동을 재현하기 위해서 1차원 하천부정류 모델, 월류제 상의 월류량 산정 모델 및 제내지 홍수범람 모델을 연계한 통합모형을 개발 하였다. 이상에서 개발된 연계 모형을 가상하도 및 실제하도에 적용하여 월류제가 갖는 기하적 특성이 홍수경감에 미치는 영향에 대해 분석하였으며, 이를 통해 향후 개선하여야 할 시사점에 대해 기술하였다.

강변저류지 횡월류부의 흐름 형태 변화를 고려한 HEC-RAS의 하도 내 부정류 모의 정확도 분석 (Accuracy Analysis of HEC-RAS for Unsteady Flow Simulation considering the Flow Pattern Variations over the Side-weir of Side-Weir Detention Basin)

  • 김상혁;윤병만;김동수;김서준
    • 한국수자원학회논문집
    • /
    • 제49권1호
    • /
    • pp.29-39
    • /
    • 2016
  • 강변저류지를 홍수방어대책에 포함시키기 위해서는 정확한 홍수조절효과 산정이 필요하며, 이를 위해 현재 실무에서는 1차원 부정류 수치모형인 HEC-RAS를 사용하고 있다. 그러나 강변저류지의 저류용량이 부족한 경우에 발생하는 잠긴 횡월류 흐름에 대해서는 HEC-RAS 부정류 수치모의의 정확도 분석이 수행되지 않았다. 따라서 본 연구에서는 직선수로에 강변저류지를 설치한 경우에 대하여 횡월류부의 다양한 흐름 형태를 재현할 수 있는 부정류 수리실험을 수행하였다. 또한 부정류 수리실험 결과를 이용하여 HEC-RAS 모형의 부정류 수치모의 결과의 정확도를 분석하여 하도 내 수위 오차 및 강변저류지의 홍수조절효과 산정 오차를 제시하였다. 분석 결과 횡월류부에서 잠긴 횡월류 흐름이 발생하는 경우에 대한 HEC-RAS의 수위 계산 결과는 최대 -5% 오차를 보였으며, 홍수조절효과 오차는 최대 2.4%로 나타나 HEC-RAS의 부정류 모의 결과가 비교적 정확한 것을 확인하였다.