• Title/Summary/Keyword: Side resistance

Search Result 737, Processing Time 0.029 seconds

Side resistance of rock socketed drilled shafts considering in situ rock mass condition (현장조건을 고려한 현장타설말뚝의 단위주면마찰력)

  • Sagong, Myung;Paik, Kyo-Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.967-973
    • /
    • 2004
  • Rock socketed drilled shafts transfer significant portion of structural loads at the socketed part. Therefore, a proper design of side and base resistances of a shaft at the socket is a major concern for the geotechnical engineers. In this study, we modified the Hoek-Brown criterion to estimate side resistance of rock socketed drilled shafts. Earlier method to compute side resistance of a shaft is linear or power functions of intact rock masses. However, side resistance is mobilized like shearing which influenced by the mechanical properties of concrete and rock masses, adhesion of rock/concrete interface, roughness of rock socket. Therefore, a single coefficient or power of uniaxial compressive strength of intact rock cannot provide accurate values of side resistance in a wide range of the uniaxial compressive strength. A new approach proposed in this study can consider in situ rock mass condition (frequency or discontinuities, weathering condition), and rock types thus, it has a wider applicability than the earlier models.

  • PDF

Performance of Rock-socketed Drilled Shafts in Deep Soft Clay Deposits

  • Kim, Myung-Hak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.409-429
    • /
    • 2006
  • In designing rock-socketed drilled shaft, bearing capacity evaluation is very important because the maximum values of base and side resistance are not generally mobilized at the same value of displacement, FHWA and AASHTO code suggest different ultimate bearing capacity formular according to rock type and shaft settlement. In domestic code suggest base resistance and side resistance can be added on condition that after confirming the result of field load test with axial load transfer test. This paper shows that static load test and hi-directional load test result analysis of deep rock-socketed drilled shaft in three different sites. Load-settlement curve, t-z, and q-w curve in rock-socketed part were calculated and compared. t-z curve in weathered and soft rock showed no deflection softening behavior in pretty large strain (about 2-3% of diameter). Ultimate resistance could be the summation of side resistance and base resistance in rock-socketed drilled shaft in domestic sites.

  • PDF

Side Shear Resistance of Drilled Shafts in Rock (암반에 근입된 현장타설말뚝의 주면지지력)

  • Kwon, Oh-Sung;Kim, Byung-Chul;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.611-618
    • /
    • 2005
  • In this research, the effect of rock mass weathering on the side shear resistance of drilled shaft socketed into weathered rock was investigated. For that, a database of 23 cast-in-place concrete piles with diameters varying from 400mm to 1,500mm were socketed into weathered igneous/meta-igneous rock at four different sites. The static axial load tests were performed to examine the resistant behavior of the piles, and a comprehensive field/laboratory testing program at the field test site was also performed to describe the in situ rock mass conditions quantitatively. No correlation was found between the compressive strengths of intact rock and the side shear resistance of weathered/soft rock. The ground investigation data regarding the rock mass conditions (e.g. $E_m,\;E_{ur},\;_{plm}$, RMR, RQD, j) was found to be highly correlated with the side shear resistance, showing the coefficients of correlation greater than 0.7 in most cases. Additionally, the applicability of existing methods for the side shear resistance of piles in rock was verified by comparison with the field test data. The existing empirical relations between the compressive strength of intact rock and the side shear resistance(Horvath (1982), Rowe & Armitage(1987) etc.) appeared to overestimated the side shear resistance of all piles tested in this research unless additional consideration on the effect of rock mass weathering or fracturing was applied. The existing methods which consider the effect of rock mass condition were modified and/or extended for weathered rock mass where mass factor j is lower than 0.1, and RQD is below 50%.

  • PDF

Evaluation of side resistance for drilled shafts in rock sections

  • Hsiao, Cheng-Chieh;Topacio, Anjerick J.;Chen, Yit-Jin
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.503-511
    • /
    • 2020
  • This study evaluated the side resistance of drilled shafts socketed into rock sections. Commonly used analysis methods for side resistance of piles in rocks are examined by utilizing a large number of load test data. The analysis of the unit side resistance of pile foundations embedded into rock sections is based on an empirical coefficient (α) and the uniaxial compressive strength (qu) or its root (${\sqrt{q_u}}$). The Davisson criterion was used to interpret the resistance capacity from the load test results to acquire the computed relationships. The α-${\sqrt{q_u}}$ relationship is proven to be reliable in the prediction of friction resistance. This study further analyzed the relationship by including the effect of rock quality designation (RQD) on the results. Analysis results showed that the analysis model of α-${\sqrt{q_u}}$-RQD provided better prediction and reliability considering the RQD classification. Based on these analyses, the side resistance of drilled shafts socked into rocks is provided with statistical data to support the analysis.

A Convergence Study through Flow Analysis of Automotive Side Mirror (자동차 사이드미러의 유동 해석을 통한 융합연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.161-166
    • /
    • 2019
  • This study examines the flows near the different side mirrors by analyzing the flow due to air resistance at A, B and C models of automotive side mirrors. Model A is a square-shaped side-mirror. Model B is a triangular side-mirror and model C is an oval-shaped side-mirror. The air resistance of the side-mirror while driving is reduced and the automotive power can be reduced by changing the design of automotive side-mirror. As analysis result, as the pressure of air resistance against side mirror becomes larger, it can be seen that the air flow rate becomes great. Therefore, it can be estimated that the smaller the pressure of air resistance, the smaller the flow rate and the better the air flow. Therefore, it can be acknowledged that model B is the best model. As the design data of the automotive side mirror obtained on the basis of this study result are utilized, the esthetic sense can be shown while driving a car at real life.

Evaluation of Unit Side Resistance of Drilled Shafts by Revised SPT N Value (환산SPT N값을 이용한 현장타설말뚝의 단위주면마찰지지력 산정)

  • Yoon, Min-Seung;Lee, Chea-Keon;Kim, Myung-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.5-10
    • /
    • 2013
  • Bearing capacity of a drilled shaft can be separated into side resistance and base resistance. But in domestic design procedure side resistance is usually underestimated compared with base resistance. Results of bi-directional test showed that measured side resistances in each different layers are larger than those evaluated from several suggested methods. In this study, measured side resistances in each different layer of drilled shafts installed in domestic sites are analyzed and compared with evaluated side resistances from the method using revised SPT N value. For weathered rock and soft rock layer, from which rock core can hardly be obtained, we suggested new evaluated methods using revised SPT N value instead of the method using uniaxial compressive strength of rock. Resuts showed that the ranges of side resistance of cohesive and non-cohesive layer are $f_s{\leq}5tf/m^2$ and $f_s{\leq}15tf/m^2$ respectively. Range of side resistance in weathered rock is $15tf/m^2$ < $f_s{\leq}50tf/m^2$ and that in soft rock $f_s{\geq}35tf/m^2$.

Bearing Capacity and Control Method of Driven Piles (기성말뚝의 지지력 거동해석과 시공관리방안)

  • 박영호;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.249-258
    • /
    • 1999
  • Dynamic load and static load tests are performed on steel pipe piles and concrete piles at five construction sites in highway to compare the difference of load bearing mechanisms. At each site, one steel pile is instrumented with electric strain gages and dynamic tests are performed on the pile during installation. Damages of strain gages due to the installation are checked and static test is performed upon the same pile after two or seven days as well. It shows that load transfer from side friction to base resistance behaves somewhat differently according to the results of load-settlement analysis obtained from PDA and static load test. Initial elastic stage of load settlement curves of two load tests is almost similar. But after the yielding point, dynamic resistance of pile behaves more stiffer than static resistance, thus, dynamic load test result might overestimate the real pile capacity compared with static result. Analysis of gage readings shows that unit skin friction increases exponentially with depth. The skin friction is mobilized at the 1∼2m above the pile tip and contributes to the considerable side resistance. Comparison of side and base resistances between the measured value and the calculated value by Meyerhof's bearing capacity equation using SPT N value shows that the calculated base resistance is higher than the measured. Therefore, contribution of side resistance to total capacity shouldn't be ignored or underestimated. Finally, based upon the overall test results, a construction control procedure is suggested.

  • PDF

Experimental Study on the Lateral Pressure Resistance of Free-form Concrete Panel (FCP) Side Form (FCP(Free-form Concrete Panel) 측면 거푸집의 측압 저항능력 실험)

  • Youn, Jong-Young;Yun, Ji-Yeong;Lee, Chang-Woo;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.8-9
    • /
    • 2021
  • FCP requires different curvatures and shapes according to the method of division, and it is necessary to manufacture a formwork accordingly. FCP production equipment consists of CNC equipment and side shape control equipment. This can be implemented in various shapes of upper, lower, and side surfaces. In the side shape control equipment, it is implemented as a variable side formwork. Among the required performance of the variable side formwork, there is stiffness against side pressure, which needs to be verified. Therefore, in this study, the FCP fabrication experiment is conducted with the developed variable side formwork. By analyzing the error in the shape of the fabricated FCP, the lateral pressure resistance capability of the side form is measured and verified.

  • PDF

A Study of Point Selection for Loading Cells in Bi-directional Pile Load Test (양방향재하시험에서 재하장치 위치 선정에 관한 연구)

  • Yoon, Minseung;Kim, Junwoo;Kim, Myunghak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.11-16
    • /
    • 2013
  • Success or failure of the bi-directional pile load test for drilled shaft depends on point selection for loading cells, that is balanced location both uplift force and downward force. Methods to evaluate the ultimate unit side resistance in rockmass layer in both domestic and foreign are based on the uniaxial compression strength of rock core, which can hardly be obtained in domestic rockmass layers which are weathered rockmass layer and soft rockmass layer with very low RQD. Therefore, this study suggested the relation charts between the revised SPT N values and developed unit side resistance of each different layers, which were obtained from bi-directional pile load tests in various domestic sites. To evaluate the appropriateness of the relation charts, the developed unit side resistances from the relation charts were used to select the loading cell position and compared with the measured unit side resistances from field pile load test. Results showed that the developed side resistance from relation charts and the measured side resistance of weathered soil layer and weathered rock layer were very close. Average developed side resistance($1,325kN/m^2$), which are average of upper soft rock layer of loading device($1,151kN/m^2$) and lower($1,500kN/m^2$), was similar with the estimated value ($1,250kN/m^2$).

Experimental Study on Side Impact Characteristics for Automotives Door Module (자동차용 도어 모듈의 측면 충돌특성에 관한 실험적 연구)

  • Jeon, S.J.;Kim, M.H.;Lee, G.B.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.318-318
    • /
    • 2009
  • The door stiffness is one of the important factors side impact. Generally, the researches have been conducted on the assembled door module. This study is to analysis the side impact characteristics for automotives door module. The impact characteristics have been determined by door module side impact test machine. To determine the initial, intermediate and peak crush resistances use the plot of load versus displacement and obtain the integral of the applied load with respect to the crush distances specified below for each door tested. The initial crush resistance is the average force required to deform the door through the initial 6 inches of crush. The intermediate crush resistance is the average force required to deform the door through the initial 12 inches of crush. The peak crush resistance will be directly obtained from the plot of load versus displacement since it is the largest force required to deform the door through the entire 18 inches crush distance. The data are used to determine if a specific vehicle or item of automotives equipment meets the minimum performance requirements of the subject Federal Motor Vehicle Safety Standard(FMVSS). FMVSS Static 214, Side impact protection, specifies performance requirements for protection of occupants in side impact crashes.

  • PDF