• Title/Summary/Keyword: Side member

Search Result 210, Processing Time 0.028 seconds

A Study on the Occurrence and A change in the times of the Nemok-dori (내목도리의 발생과 시대적 변화에 관한 연구)

  • Heo, Kyoung-Do;Chung, Myung-Sup
    • Journal of architectural history
    • /
    • v.29 no.1
    • /
    • pp.39-49
    • /
    • 2020
  • A dapo type bracket system which consists of chuganpo(柱間包) and chusangpo(柱上包) with a fake-beam adopted a nemok-dori member to cope with oemok-dori member in order to obtain balance between the outer-side and the inner-side of the bracket system. The middle part of the longest rater in the dapo system is supported by three points made by oemok-dori, jusim-dori and nemok-dori members and the area between the rafer supporting points forms a supporting area. The increase of rafter supporting points and supporting area leads to heightening the structural stability and the efficiency of load delivery. In the eave of dapo system the portion where the three supporting points formed by oemok-dori, jusim-dori and nemok-dori members shows as 33% in the early period, 71% in the middle period and 78% in the later period. On the contrary the portion where more than one of the three dori members were omitted shows as 67% in the early period, 29% in the middle period and 22% in the later period. This is the result of the increase of the number and the distance of steps in the dapo bracket system as time goes on. This is because the structural role of three supporting points becomes important as the increase of distance between the dori members leads to the increase of load which burdens on each dori member.

Computer-Aided Optimal Design of Heat Exchangers (컴퓨터에 의한 열교환기 최적설계)

  • Song Tae Ho;Oh Jin Kook;Yoon Chang Hyun;Huh Gyoung Jae
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.10 no.4
    • /
    • pp.297-303
    • /
    • 1981
  • Optimal design of shell and tube heat exchanger system with the working fluids which may condense outside the tubes has been carried out under specified inlet and outlet conditions. Independent variables such as number of parallel series, tube diameter, distribution pitch, tube side pressure loss, baffle cut and shell side pressure loss as well as dependent variables such as shell diameter, number of tubes, number of serial series and number of baffles were all characterized according to the standard. Exhaustive search method was used to construct a computer program together with the calculation of heat transfer rate by LMTD method. stress analysis of maj or parts was made to examine their dimensions satisfying heat transfer and pressure loss requirements. Cost estimation based on the installation, operation and maintenance was also made, A few representative variables, heat transfer area, shell diameter and pressure loss, were used to express cost function, finally giving the optimal selection of all tentative solutions.

  • PDF

A Study on the Collapse Characteristics of Hat-Shaped Members with Spot Welding under Axial Compression(I) (모자형 단면 점용접부재의 축방향 압궤특성에 관한 연구(I))

  • 차천석;김정호;양인영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.192-199
    • /
    • 2000
  • The spot-welded automotive side member which has a hat-shaped section and a double hat shaped section has been tested on the axial static(10mm/min) and quasi-static(50mm/min) compressing load. The collapse characteristics of automotive sections have been reviews on shift on shape and in width of the spot-voiding on the flange. On the basis of the results of tests and reviews, the optimum energy absorption capacity of the structure has been studied.

  • PDF

A Study on the Strengthening of Side Structure Against Tug Push Loads (Tug Push 구조보강 방안 연구)

  • Kwon, Oh-Seok;Kim, Doe-Hyun;Ryu, Hong-Ryeul
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.65-70
    • /
    • 2009
  • In case that tug boat pushes side structures of other large vessels to maneuver, it is required that contacted side structures of the maneuvered vessels have enough structural safety against tug push loads. The objective of this study is to evaluate the structural effect of carling which is installed between side longitudinal stiffeners. A comparative study of side structures with carling and without carling is performed to evaluate the effect of carling member by both FE analysis. According to the result, it is found that the carlings play effective role in the strength of side plates and side longitudinal stiffeners against tug push loads.

  • PDF

Family Member's Perceptions of Side Rail Use in Geriatric Hospital (노인요양병원에서의 침대난간(Side Rail) 사용에 대한 환자가족의 인식)

  • Lee, Keum-Jae;Park, Gyeong-Sook;Park, Yeon-Suk
    • Journal of Digital Convergence
    • /
    • v.14 no.12
    • /
    • pp.503-513
    • /
    • 2016
  • The purpose of this study is to figure out family member's perceptions of side rail use in geriatric hospital by Cavanagh's content analysis with in-depth interview. This finding of the study suggests that the six themes of these perceptions are precautionary safety supervision, movement convenience, ritualistic nursing, physical restraint, danger of wounds, and alternative methods in an older person ward, and that the cause of recognized perceptions is not based on actual events, but rather on relatives' perceived protective value. With the transition of medical industry environment, there is a significant emphasis on efficacy and effectiveness of practice, risk management and evidence-based practice. However, the issue of side rail use and physical restraints remains unsolved in care of older people. Nurses claim the necessity of regimented protocol and clarification from professional organization regarding the side rail use.

Springback Analysis of the Front Side Member with Advanced High Strength Steel (고강도 강판을 적용한 프런트 사이드 멤버의 스프링백 해석)

  • Song J. H.;Kim S. H.;Park S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.106-109
    • /
    • 2005
  • Springback is a common phenomenon in sheet metal forming, caused by the elastic recovery of the internal stresses after removal of the tooling. Recently, advanced high strength steels (AHSS) such as TRIP and DP are finding acceptance in the automotive industry because their superior strength to weight ratio can lead to improved fuel efficiency and assessed crashworthiness of vehicles. The major troubles of the automotive structural members stamped with high strength steel sheets are the tendency of the large amount of springback due to the high yield strength and the tensile strength. The amount of springback is mainly influenced by the type of the yield function and anisotropic model induced by rolling. The discrepancy of the deep drawn product comparing the data of from the product design induced by springback must be compensated at the tool design stage in order to guarantee its function and assembly with other parts. The methodology of compensation of the low shape accuracy induced by large amount of springback is developed by the expert engineer in the industry. Recently, the numerical analysis is introduced in order to predict the amount of springback and to improve the shape accuracy prior to tryout stage of press working. In this paper, the tendency of springback is evaluated with respect to the blank material. The stamping process is analyzed fur the front side member formed with AHSS sheets such as TRIP60 and DP60. The analysis procedure fully covers the binderwrap, stamping, trimming and springback process with the commercial elasto-plastic finite element code LS-DYNA3D.

  • PDF

An Experimental Study on the Structural Behavior of Reinforced Concrete Beam with External Adhesion of CFRP Grid (격자형 탄소섬유강화플라스틱의 외부부착 보강에 따른 철근 콘크리트 보의 구조적 거동에 관한 실험적 연구)

  • Kim, Sang-Woo;Kim, Geon-Woo;Kim, Jin-Sup
    • Land and Housing Review
    • /
    • v.12 no.4
    • /
    • pp.119-125
    • /
    • 2021
  • The study presents the ductility reinforcement effect of the RC bending member using the CFRP Grid as an experimental result. Experimental variables include a non-reinforced RC bending member (ORI), a bottom reinforced RC bending member (REB), and an RC bending member reinforced at the bottom and side (REBS). The experiment was carried out with four points bending test. As a result of the experiment, it was confirmed that the maximum bending strength increased by 17-20% through reinforcement. In addition, the ductility index calculation results confirmed that the ductility index of REB and REBS increased by 2 and 3 times, respectively, compared to the ORI.

The Effects Manager's Job Competency on Employee's Innovative Activity (기업 관리자의 직무역량이 종업원의 혁신활동에 미치는 영향)

  • Choi, Hyung-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.2
    • /
    • pp.57-64
    • /
    • 2016
  • While many of company try to increase customer satisfaction by empowerment, there are need to figure out which can increase employee's problem solving ability in company side. It is related to Innovative Activity that can create new idea to fix job process. In this study, researcher institute a factor that 'Manager's Job Competency' which can increase member's Innovative Activity. And try to figuring out it has what kind of effect on innovative activity and management performance through empirical method. For the empirical study, researcher get 119 samples from service industry, and result of study show us manager's job competency has positive effect on member's innovative activity and management performance. Base on this result, researcher provide a manageric implication and limitaions of study.

A Model Reference Variable Structure Control based on a Neural Network System Identification for an Active Four Wheel Steering System

  • Kim, Hoyong;Park, Yong-Kuk;Lee, Jae-Kon;Lee, Dong-Ryul;Kim, Gi-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.142-155
    • /
    • 2000
  • A MIMO model reference control scheme incorporating the variable structure theory for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of continuous-time nonlinear dynamics with known or unknown uncertainties. The scheme employs an neural network to identify the plant systems, where the neural network estimates the nonlinear dynamics of the plant. By the Lyapunov direct method, the algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed and it is not necessary to know the exact structure of the system. With the resulting identification model which contains the neural networks, it does not need higher degrees of freedom vehicle model than 3 degree of freedom model. Th proposed scheme is applied to the active four wheel system and shows the validity is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the reduction of yaw rate overshoot of a typical mid-size car improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response and smaller side angle than the 2WS case.

  • PDF

Crash FE Analysis of Front Side Assembly of Passenger Cars for Management of Collapse Shape Via Variation of Thickness with Reverse Engineering (승용차용 프론트 사이드 조립체의 박판 두께 조정에 따른 붕괴모드 제어에 관한 역설계적 유한요소 층돌해석)

  • Kim, Yong-Woo;Kim, Jeong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.106-113
    • /
    • 2008
  • The goal of crashworthiness is an optimized vehicle structure that can absorb the crash energy by controlled vehicle deformations while maintaining adequate space so that the residual crash energy can be managed by the restraint systems to minimize crash loads transfer to the vehicle occupants. Front side assembly is one of the most important energy absorbing components in relating to the crashworthiness design of vehicle. The structure and shape of the front side assemblies are different depending on auto-makers and size of vehicles. Thus, it is not easy to grab an insight on designer's intention when you glance at a new front side member without experiences. In this paper, we have performed the explicit nonlinear dynamic finite element analysis on the front side assembly of a passenger car to investigate the effect of thickness distribution of the front side assembly on the collapse shape, which is important in the aspect of controlling deformation to maintain adequate space, from the viewpoint of reverse engineering. To do this, we have performed crash FE analysis for the assembly by varying the thickness distribution of the assembly.