• Title/Summary/Keyword: Side jet

Search Result 135, Processing Time 0.023 seconds

Numerical Study on Methane/Air Turbulent Jet Diffusion Flames Near-Extinction Using Conditional Moment Closure Model (CMC model에 의한 near-extinction methane/air turbulent jet diffusion flame의 수치적 모사)

  • Kang, Seung-Tak;Kim, Seung-Hyun;Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.11-17
    • /
    • 2002
  • The first-order conditional moment closure (CMC) model is applied to $CH_4$/Air turbulent jet diffusion flames(Sandia Flame D, E and F). The flow and mixing fields are calculated by fast chemistry assumption and a beta function pdf for mixture fraction. Reacting scalar fields are calculated by elliptic CMC formulation. The results for Flame D show reasonable agreement with the measured conditional mean temperature and mass fractions of major species, although with discrepancy on the fuel rich side. The discrepancy tends to increase as the level of local extinction increases. Second-order CMC may be needed for better prediction of these near-extinction flames.

  • PDF

A Drag and Flow Characteristics around the Hybrid Projectile (하이브리드탄의 항력 및 유동해석)

  • 이상길;이동현
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.23-34
    • /
    • 2000
  • Three dimensional, compressible, mass weighted averaging of Favre, Navier-Stokes system with k-$\varepsilon$ turbulence, is numerically discretized to compute three dimensional multiple jet interaction flow fields for a hybrid projectile containing three rocket motors in the ogive section. Numerical flow field computations have been made for angled nose jets and rockets at supersonic speed using multiblock structured grid. The jet conditions include very high jet to free stream pressure ratio and high temperature. It is shown that the strength of nozzle stagnation pressure affects the flow field near the side nozzle and the high stagnation pressure increases total amount of drag by a few percent. However, minor drag loss due to the pressure drag might be fully overcomed by an additional axial thrust. The results of present study can be applied for the design of future hybrid projectile.

  • PDF

A new gas jet type Z-pinch extreme ultraviolet light source for next generation lithography (리소그라피를 위한 새로운 가스젯 방식의 Z방전 극자외선 광원)

  • Song, In-Ho;Choi, Chang-Ho;Ko, Kwang-Cheol;Hotta, Eiki
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1459-1460
    • /
    • 2006
  • A new gas jet Z-pinch EUV light source having double gas jet electrodes has been developed. It has two nozzles and two diffusers. The EUV beam is collected from the side of pinch plasma, generated in between the inner nozzle and corresponding diffuser. A cylindrical shell of He gas curtain produced by the outer nozzle is specially designed for shielding the debris and suppressing the inner gas expansion. We have succeeded in generating EUV energy of 1.22 mJ/sr/2%BW/pulse at 13.5nm. The estimated dimension of EUV source is to be FWHM diameter of 0.07 mm and length of 0.34 mm, and FW 1/e2 diameter of 0.15 mm and length of 1.2 mm.

  • PDF

Development of Synthetic Jet Micro Air Pump (Synthetic Jet 마이크로 에어펌프의 개발)

  • Choi, J.P.;Kim, K.S.;Seo, Y.H.;Ku, B.S.;Jang, J.H.;Kim, B.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.594-599
    • /
    • 2008
  • This paper presents a micro air pump based on the synthetic jet to supply reactant at the cathode side for micro fuel cells. The synthetic jet is a zero mass flux device that converts electrical energy into the momentum. The synthetic jet actuation is usually generated by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, orifices and PZT diaphragms. Therefore, it is very important that the design parameters are optimized because of the simple configuration. To design the synthetic jet micro air pump, a numerical analysis has been conducted for flow characteristics with respect to various geometries. From results of numerical analysis, the micro air pump has been fabricated by the PDMS replication process. The most important design factors of the micro air pump in micro fuel cells are the small size and low power consumption. To satisfy the design targets, we used SP4423 micro chip that is high voltage output DC-AC converter to control the PZT. The SP4423 micro chips can operate from $2.2{\sim}6V$ power supply(or battery) and is capable of supplying up to 200V signals. So it is possible to make small size controller and low power consumption under 0.1W. The size of micro air pump was $16{\times}13{\times}3mm^3$ and the performance test was conducted. With a voltage of 3V at 800Hz, the air pump's flow rate was 2.4cc/min and its power consumption was only 0.15W.

Solution Processable P-OLED (Polymer Organic Light Emitting Diode) Display Technology.

  • Lee, Jueng-Gil;Carter, Julian
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1050-1055
    • /
    • 2005
  • We report the development frontiers that are dictating the speed of adoption of polymer organic light emitting diode (P-OLED) technology in market applications. Our presentation includes both the developments taking place in materials and the rapid advances in the manufacturing processes used for solution processable P OLEDs. On the manufacturing side, the latest progress in ink jet printing process is discussed. On the materials side, we look at both fluorescent and phosphorescent material performance including the CDT development roadmap.

  • PDF

Solution Processable P-OLED (Polymer Organic Light Emitting Diode) Display Technology.

  • Lee, Jueng-Gil;Carter, Julian
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1355-1360
    • /
    • 2005
  • We report the development frontiers that are dictating the speed of adoption of polymer organic light emitting diode (P-OLED) technology in market applications. Our presentation includes both the developments taking place in materials and the rapid advances in the manufacturing processes used for solution processable P-OLEDs. On the manufacturing side, the latest progress in ink jet printing process is discussed. On the materials side, we look at both fluorescent and phosphorescent material performance including the CDT development roadmap.

  • PDF

JET MOMENTUM CRITERIA FOR INLET CONTROL TO REDUCE WIND EFFECTS ON THE AIR DISTRIBUTION IN A SIDE-WALL-INLET VENTILATION SYSTEM (SIDE-WALL-INLET 환기시스템 축사에서 유입구의 컨트롤을 위한 젯트모멘텀)

  • ;Guoqiang Zhang
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1997.11a
    • /
    • pp.51-55
    • /
    • 1997
  • 국내의 축사는 윈치커튼의 위치를 조절하여 줌으로써 내부의 기류를 교환하는 개방형 축사가 대부분을 차지하고 있다. 개방형 축사의 환기는 외기풍속의 영향에의해 내부 기류의 흐름이 형성되어 바람이 없는 고온기에는 내부의 기류혼합이 잘 되지 않기 때문에 고온으로 인한 내부의 환경이 열악하다. 따라서 자연환기 축사에 배기팬 또는 입기팬을 설치하는 조합형 환기 축사가 주를 이를 것으로 판단된다. (중략)

  • PDF

The Improvement of Form Accuracy by High Pressure Air Jet in Slot Grinding (미세홈 가공시 고압공기분사에 의한 형상정밀도의 향상)

  • Lee, Seok-U;Lee, Yong-Chan;Jeong, Hae-Do;Choe, Heon-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.68-74
    • /
    • 1999
  • One of the recent changes in machining technology is rapid application of micro- and high precision grinding processes. A fine groove generation is necessary for the fabrication of optic, electronic and semiconductor parts, and achieved by chemical or mechanical processes. Slot grinding is very efficient for the generation of micro ordered groove with hard and brittle materials. As slot grinding is continuous, the ground depth become gradually shallow because of wheel wear. The form accuracy become worse from the increase of ground slot width by the loading phenomena at wheel side, results on chipping damage of the workpiece. The experiments achieve to the enhancement of the form accuracy and chipping free of the brittle materials using V shaped cast iron bonded diamond wheels. In this study we focused on the investigation of the effect of the high pressure air jet on the grinding characteristics. As a results, we found that the high pressure air jet is very effective on the reductions of the wheel wear, enhancement of the form accuracy.

  • PDF

Study of Thrust-Vectoring Control Using Fluidic Counterflow Concept (Fluidic Counterflow 개념을 이용한 추력벡터제어에 관한 연구)

  • Jung, Sung-Jae;Lim, Chae-Min;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1948-1954
    • /
    • 2003
  • The thrust vector control using a fluidic counterflow concept is achieved by applying a vacuum to a slot adjacent to a primary jet which is shrouded by a suction collar. The vacuum produces a secondary reverse flowing stream near the primary jet. The shear layers between the two counterflowing streams mix and entrain mass from the surrounding fluid. The presence of the collar inhibits mass entrainment and the flow near the collar accelerates causing a drop in pressure on the collar. For the vacuum asymmetrically applied to one side of the nozzle, the jet will vector toward the low-pressure region. The present study is performed to investigate the effectiveness of thrust vector control using the fluidic counterflow concept. A computational work is carried out using the two-dimensional, compressible Navier-Stokes equations, with several kinds of turbulence models. The computational results are compared with the previous experimental ones. It is found that the present fluidic counterflow concept is a viable method to vector the thrust of a propulsion system.

  • PDF

A Numerical Study on Clear-Air Turbulence Events Occurred over South Korea (한국에서 발생한 청천난류 사례들에 대한 수치연구)

  • Min, Jae-Sik;Kim, Jung-Hoon;Chun, Hye-Yeong
    • Atmosphere
    • /
    • v.22 no.3
    • /
    • pp.321-330
    • /
    • 2012
  • Generation mechanisms of the three moderate-or-greater (MOG)-level clear-air turbulence (CAT) encounters over South Korea are investigated using the Weather Research and Forecasting (WRF) model. The cases are selected among the MOG-level CAT events occurred in Korea during 2002-2008 that are categorized into three different generation mechanisms (upper-level front and jet stream, anticyclonic flow, and mountain waves) in the previous study by Min et al. For the case at 0127 UTC 18 Jun 2003, strong vertical wind shear (0.025 $s^{-1}$) generates shearing instabilities below the enhanced upper-level jet core of the maximum wind speed exceeding 50 m $s^{-1}$, and it induces turbulence near the observed CAT event over mid Korea. For the case at 2330 UTC 22 Nov 2006, areas of the inertia instability represented by the negative absolute vorticity are formed in the anticyclonically sheared side of the jet stream, and turbulence is activated near the observed CAT event over southwest of Korea. For the case at 0450 UTC 16 Feb 2003, vertically propagating mountain waves locally trigger shearing instability (Ri < 0.25) near the area where the background Richardson number is sufficiently small (0.25 < Ri < 1), and it induces turbulence near the observed CAT over the Eastern mountainous region of South Korea.