• Title/Summary/Keyword: Side Necking

Search Result 12, Processing Time 0.027 seconds

Relationship between Side-Necked Volume in a SENB specimen and Plastic Deformation Volume (SENB 시험편의 측면함몰과 소성영역관계)

  • Lee, Jeong-Hyun;Kim, Do-Hyung;Kim, Dong-Hak;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.420-425
    • /
    • 2004
  • Lee and Kang measured side-necking deformation near a crack-tip for CT specimen using Stereoscopic Digital Speckle Photography and Digital Image Correlation. In this work the same technique was applied to SENB specimen. We happened to find that the deformation shape of the side-necking is similar to the one of plastic region estimated by McClictock using slip line theory. Based on volume constancy of plastic deformation as well as this finding, it is expected that a linear relationship holds between the volume of plastic deformation region and the one of side-necking upon the lateral surface of a specimen. To prove the idea, a preliminary study has been performed using 3-D finite element method on a model with modified boundary layer formulation. As the result, it is shown that the idea works well with acceptable error.

  • PDF

In situ Measurement of Lateral Side-Necking of a Fracture Specimen Using a Stereo Vision and Digital Image Correlation (Stereo Vision과 디지털 화상상관법을 이용한 파괴시험편의 측면 함몰의 현장 측정)

  • Lee Jeong-Hyun;Kang Ki-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.154-161
    • /
    • 2004
  • An experimental method for measuring side-necking deformation near a crack-tip is described. It is based on Stereoscopic Digital Speckle Photography and Digital Image Correlation, and it is simple and robust to mechanical vibration inherent to a hydraulic material test system. The validity and accuracy are evaluated through a calibration fur rigid body translation. A case study has been performed for a CT specimen made of a ductile steel and the three dimensional profiles of the side-necked region are presented as the load increases. Also, the details of the procedure and the surface treatment are discussed.

Methods to Evaluate Stress Triaxiality from the Side Necking Near the Crack Tip (균열선단 부근의 측면함몰로부터 응력삼축성의 결정 방법)

  • Kim, Dong-Hak;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1021-1028
    • /
    • 2004
  • Kim et al. suggested an experimental method to determine the Q parameter in situ from the out-of-plane displacement and the in-plane strains on the surface of side necking near the crack tip. In this paper, the procedure to evaluate the stress triaxiality near a crack tip such as the Q parameter is to be polished in the details for simplicity and accuracy. That is, Q and hydrostatic stress are determined only from the out-of-plane displacement, but not using in-plane strain, which is hard to measure. And also, the plastic modulus is determined by an alternative way. Through three-dimensional finite element analyses for a standard CT specimen with 20% side-grooves, the validities of the new procedures are examined in comparison to the old ones. The effect of location where the displacements are measured to determine the stress triaxiality is explored.

The Experimental Method of Measuring Q (Q의 실험적 측정법)

  • Kim, Dong-Hak;Lee, Jeong-Hyun;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.285-291
    • /
    • 2003
  • An experimental method to measure Q-parameter in-situ is described. The basic idea comes from the fact that the side necking near a crack tip indicates the loss of stress triaxiality, which can be scaled by Q. From the out-of-plane displacement and the in-plane strain near the surface of side necking, stress field averaged through the thickness is calculated and then Q is determined from the difference between the stress field and the HRR field corresponding to the identical J-integral. To prove the validity, three-dimensional finite element analysis has been performed for a CT configuration with side-groove. Q-value which was calculated directly from the near-tip stress field is compared with that determined by simulating the experimental procedure according to the proposed method, that is, the Q-value determined from the lateral displacement and the inplane strain. Also, the effect of location where the displacement and strain are measured is explored.

  • PDF

Relationship between Side-Necking and Plastic Zone Size at Fracture (파괴 시 발생하는 측면함몰과 소성영역크기와의 관계)

  • Kim, Do-Hyung;Kim, Dong-Hak;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.365-371
    • /
    • 2004
  • Generally, fracture of a material is influenced by plastic zone size developed near the crack tip. Hence, according to the relative size of plastic zone in the material, the mechanics as a tool for analyzing the fracture process are classified into three kinds, that is, Linear Elastic Fracture Mechanics, Elastic Plastic Fracture Mechanics, Large Deformation Fracture Mechanics. Even though the plastic zone size is such an important parameter, the practical measurement techniques are very limited and the one for in-situ measurement is not virtually available. Therefore, elastic-plastic FEA has been performed to estimate the plastic zone size. In this study, it is noticed that side necking at the surface is a consequence of plastic deformation and lateral contraction and the relation between the plastic zone and side necking is investigated. FEA for modified boundary layer models with finite thickness, various mode mixities $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$ and strain hardening exponent n=3, 10 are performed. The results are presented and the implication regarding to application to experiment is discussed.

  • PDF

An Experimental Method for Measuring Q (Q의 실험적 측정법)

  • Kim, Dong-Hak;Lee, Jeong-Hyun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1607-1613
    • /
    • 2003
  • An experimental method to measure Q-parameter in-situ is described. The basic idea comes from the fact that the side necking near a crack tip indicates the loss of stress triaxiality, which can be scaled by Q. From the out-of-plane displacement and the in-plane strain near the surface of side necking, stress field averaged through the thickness is calculated and then Q is determined from the difference between the stress field and the HRR field corresponding to the identical J-integral. To prove the validity, three-dimensional finite element analysis has been performed for a CT configuration with side-groove. Q-value which was calculated directly from the near-tip stress field is compared with that determined by simulating the experimental procedure according to the proposed method, that is, the Q-value determined from the lateral displacement and the in-plane strain. In addition, the effect of location where the displacement and strain are measured is explored.

Experimental Method to Evaluate Stress Triaxiality near the Crack Tip;Applicability to Various Specimen Configurations (균열선단 응력삼축성의 측정방법;여러 형상 시험편에의 적용성 검토)

  • Kim, Dong-Hak;Kim, Do-Hyung;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.60-65
    • /
    • 2004
  • Kim et al. described and compared other methods of measuring stress triaxiality using the displacements near the side necking, proved the validities of these models and explored the effect of location where the displacements are measured using three-dimensional finite element analysis for a standard CT specimen with 20% side-grooves. In this paper, the applicability of these models to various specimen and materials are examined in detail. To consider the effects of side groove, thickness of specimen, crack length, specimen geometry and strain hardening exponents, three-dimensional finite element simulation has been performed for various specimen geometries. For a case without a side groove, in the whole the difference between the stress triaxilaity analytically evaluated and directly determined is similar. For a case with a 20% side groove the stress triaxiality is measured at the area where ${\theta}$ is smaller than $60^{\circ}$, which excludes a side grooved area.

  • PDF

Application of Electromagnetic Wave for Evaluating Necking Defects in Bored Piles (현장타설말뚝의 네킹 결함 평가를 위한 전자기파의 적용성 연구)

  • Lee, Jong-Sub;Song, Jung Wook;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.27-35
    • /
    • 2018
  • The objective of this study is to demonstrate the suitability of electromagnetic waves for evaluating necking defects in bored piles using electromagnetic waves. Experiments are conducted with small-scaled defective model pile with diameter of 150 mm and length of 270 mm. Two necking defects are generated at the upper and lower positions on two different sides of the model pile, respectively. The other two necking defects are generated at the upper and lower positions on the same side of the model pile. Electrical wires are installed alongside the stainless steel wire of a steel cage to configure a two-conductor transmission line. A time-domain reflectometer is used to generate and defect electromagnetic waves. The experimental results show that electromagnetic waves are reflected at the necking defects and the end of the model pile. In addition, calculated defect locations are almost the same as actual defect locations. This study demonstrates that electromagnetic waves can be effective tool for evaluating necking defects in bored piles.

Study on the Influence of Die Corner Radius for Deep Drawing of Elliptical Product of Automobile (자동차용 타원형 디프 드로잉 제품의 다이 반경에 관한 연구)

  • 허영민;박동환;강성수
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.668-675
    • /
    • 2002
  • The circles deform into various shape during deformation, the major and minor axes of which indicate the direction of the major and minor principal strains. Likewise, the measured dimensions are used to determine the major and minor principal strain magnitudes. This circular grid technique of measuring strains can be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, of incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.

In-situ Measurement of Plastic Zone Developed During Ductile Fracture Process (연성 금속의 파괴과정에서 발생하는 소성영역의 현장 측정)

  • Back Jung-Hyun;Kim Do-Hyung;Kang Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.637-642
    • /
    • 2006
  • A plastic zone size is regarded as a measure of material resistance, and also it determines the fracture behavior. The importance of estimating or measuring the plastic zone size cannot be too emphasized. In this article, SDSP(Stereo Digital Speckle Photography) is examined as a new techniques to measure the plastic zone developed in a ductile metal. This technique is simple, vibration free and non-contact, and measures simultaneously in-plane displacements as well as out-of plane displacements like the side necking. Experimental results for a CT specimen are presented to demonstrate the accuracy in comparison with those obtained by recrystallization technique and finite element analysis.