• 제목/요약/키워드: Side Milling

검색결과 71건 처리시간 0.031초

Hard IP Invisible PAB 의 밀링타입 Tear Seam 해석 방안 연구 (A Study on Opening Analysis of Milling type Tear Seam of Hard IP Invisible PAB Door)

  • 최요한;이강욱;안병재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.464-468
    • /
    • 2008
  • In most of the passenger side airbag door in hard type IP today is designed with invisible tear-seam line. In order to design the tear-seam invisible, the tear-seam must be designed with required RWT (residual wall thickness) that is just thick enough to be broken by the PAB pressure on deployment and not by other surrounding impact forces. Hence, keeping the right optimum opening force is very important, and finding the right RWT became the key in designing the tear-seam. The study conducted in this paper describes the search for the optimum RWT around the tear-seam by using finite element method and the optimum RWT is suggested for milling type tear-seam having V-shape cross-section.

  • PDF

평엔드밀링 공정에서 절삭속도 및 이송속도가 측벽의 축방향 형상에 미치는 영향 (Effects of Cutting Speed and Feed Rate on Axial Shape in Side Walls Generated by Flat End-milling Process)

  • 김강
    • 대한기계학회논문집A
    • /
    • 제41권5호
    • /
    • pp.391-399
    • /
    • 2017
  • 절삭속도 및 이송속도가 평엔드밀로 하향절삭 가공된 측벽 형상에 미치는 영향을 실험을 통하여 알아보고자 한다. 실험은 절삭속도 및 공구 직경, 절삭날 당 이송거리를 변수로 하여 수행하며, 실험 결과로서 배분력과 축방향 형상을 측정한다. 연구 결과, 이송속도를 절삭속도로 나눈 값에 비례하는 날 당 이송거리가 작을수록 축방향 형상정밀도가 높아지는 것이 확인되었다. 아울러, 축방향 형상은 서로 다른 기울기를 갖는 두 직선이 특이점에서 만나는 형태로 단순화 할 수 있다. 그러므로 운전 중 작업자에 의한 형상정밀도의 추정 및 날 당 이송거리 조정에 의한 개선이 용이할 것으로 판단된다.

공구경로 곡면을 이용한 이송속도 최적화 (Feedrate Optimization using CL Surface)

  • 김수진;양민양
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.547-552
    • /
    • 2003
  • In mold machining, there are many concave machining regions where chatter and tool deflection occur since MRR (material removal rate) increases as curvature increases even though cutting speed and depth of cut are constant. Boolean operation between stock and tool model is widely used to compute MRR in NC milling simulation. In finish cutting, the side step is reduced to about 0.3mm and tool path length is sometimes over 300m. so Boolean operation takes long computation time and includes much error if the resolution of stock and tool model is larger than the side step. In this paper, curvature of CL(cutter location) surface and side step of tool path is used to compute the feedrate for constant MRR machining. The data structure of CL surface is Z-map generated from NC tool path. The algorithm to get local curvature from discrete data was developed and applied to compute local curvature of CL surface. The side step of tool path was computed by point density map which includes cutter location point density at each grid element. The feedrate computed from curvature and side step is inserted to new tool path to regulate MRR. The resultants wire applied to feedrate optimization system which generates new tool path with feedrate from NC codes for finish cutting. The system was applied to speaker mold machining. The finishing time was reduced to 12.6%. tool wear was reduced from 2mm to 1.1mm and chatter marks and over cut on corner were removed.

  • PDF

측벽 엔드밀 가공 시 반응표면법을 이용한 최적가공조건 (Optimum Manufacturing Condition of Side Wall End Milling Using Response Surface Methodology)

  • 최재기;박진우;홍도관;우병철;안찬우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1313-1317
    • /
    • 2007
  • Manufacturing condition is one of the most important factors in precision manufacturing. In this study, we optimized minimizing the Z vibration acceleration using RSM(response surface methodology) by table of orthogonal array. RSM was well adapted to make the analytical model of the minimum vibration acceleration and enable the objective function to be easily created and a great deal of the time in computation to be saved. Therefore, it is expected that the proposed optimization procedure using RSM can be easily utilized to solve the optimization problem of manufacture condition.

  • PDF

측면 칩브레이커형 선삭인서트의 가공특성에 관한 연구 (A Study on the Machining Characteristics of Turning Inserts of Lateral Chip Breaker Shape)

  • 김택수;이상민;조준현;박상현;이종찬
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.171-176
    • /
    • 2012
  • So far, carbide insert production technology was carried out using a diamond grinding wheel. This production technology has problem that raise production costs and decrease in productivity. The SIDE PRESS method to solve this problem have been developed. In this paper, the machining characteristics of lateral chip breaker turning inserts produced by the SIDE PRESS method was studied. The cutting force and the resulting surface roughness were measured at various cutting conditions. The experimental results indicate that the chip breaker inserts of three-dimensional geometry is the best cutting performance.

금형 가공 시 최적 가공조건을 결정하기 위한 공구수명 예측 프로그램 개발 (Development of tool-life prediction program to determine the optimal machining conditions in mold machining)

  • 박순옥;김민학;이선경;정성택
    • Design & Manufacturing
    • /
    • 제17권1호
    • /
    • pp.7-12
    • /
    • 2023
  • Recently, with the emergence of the 4th industrial revolution, the demand for smart factories and factory automation is increasing. In this study, a tool life prediction program was developed to select optimal machining conditions using CNC milling equipment, which is widely used in flexible production and automation. The equipment used in the experiment was Hwacheon Machine Tool's 5-axis machining equipment, and the tool used was a 17F2R tool. For the machining path, the down-milling cutting method was selected and long-term machining was performed. The analysis standard for side wear on the tool was set at 0.1 to 0.2 mm, and tool life data and wear data were obtained in the cutting experiment. The program was created through the data obtained from the experiment, and a prediction rate of over 90% was secured when comparing the experimental data and the predicted data.

  • PDF

공구경로 곡면을 이용한 이송속도 최적화 (Feedrate Optimization Using CL Surface)

  • 김수진;정태성;양민양
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.39-47
    • /
    • 2004
  • In mold machining, there are many concave machining regions where chatter and tool deflection occur since MRR(material removal rate) increases as curvature increases even though cutting speed and depth of cut are constant. Boolean operation between stock and tool model is widely used to compute MRR in NC milling simulation. In finish cutting, the side step is reduced to about 0.3mm and tool path length is sometimes over loom, so Boolean operation takes long computation time and includes much error if the resolution of stock and tool model is larger than the side step. In this paper, curvature of CL (cutter location) surface and side step of tool path is used to compute the feedrate for constant MRR machining. The data structure of CL surface is Z-map generated from NC tool path. The algorithm to get local curvature from discrete data was developed and applied to compute local curvature of CL surface. The side step of tool path was computed by point density map which includes cutter location point density at each grid element. The feedrate computed from curvature and side step is inserted to new tool path to regulate MRR. The resultants were applied to feedrate optimization system which generates new tool path with feedrate from NC codes for finish cutting. The system was applied to the machining of speaker and cellular phone mold. The finishing time was reduced to 12.6%, tool wear was reduced from 2mm to 1.1mm and chatter marks and over cut on corner were reduced, compared to the machining by constant feedrate. The machining time was shorter to 17% and surface quality and tool was also better than the conventional federate regulation using curvature of the tool path.

가이드 수술용 템플릿을 위한 5축 정밀가공공정의 정확성에 관한 연구 (Accuracy of 5-axis precision milling for guided surgical template)

  • 박지만;이태경;정제교;김용;박은진;한종현;곽재영;김성균;허성주
    • 대한치과보철학회지
    • /
    • 제48권4호
    • /
    • pp.294-300
    • /
    • 2010
  • 연구 목적: 컴퓨터-가이드 임플란트 수술은 전통적인 방법에 비해 여러 가지 장점을 가진다. 본 연구의 목적은 가이드 수술용 템플릿 제작을 위한 좌표동기화 5축 정밀가 공공정의 정확도를 범용 CAD 소프트웨어를 통해 역설계공학의 방법으로 평가하는 것이다. 연구 재료 및 방법: 악궁 형태의 모형에 거타퍼쳐 스타핑을 매식한 10 개의 모형을 만들고 상부에 실리콘 인상재를 이용하여 인공치은을 덮어 스타핑의 위치를 보이지 않게 가렸다. 모형의 하면에 동기화를 위한 좌표동기화 형상을 만든 뒤 Cone beam CT에서 3차원 영상을 얻었다. 임플란트 계획 소프트웨어의 CT 이미지 상에서 매식된 스타핑과 동일한 방향으로 스타핑의 1/2 깊이까지 가상의 시술계획을 하고, 스타핑의 방향벡터와 저지점 (1/2지점) 데이터를 석고모형의 영상으로 좌표동기화 하였다. 이후 모형하면의 좌표동기화 형상을 이용하여 가공기기상의 좌표로 좌표변환을 통해 가공좌표동기화를 하였다. 5축 밀링머신의 좌표동기화판에 모형을 고정한 후, 동기화된 가공데이터에 의거하여 스타핑과 동일한 직경의 드릴로 계획된 벡터와 깊이로 정확히 가공 하였다. 모델에 정확히 안착되는 인상트레이를 CT 장비에 미리 고정한 상태에서, 인상트레이에 모델을 적합하여 이미지를 획득한 뒤 3차원 재구성하는 방법으로 영상을 중첩하여 비교 분석하였다. SolidWorks (Dassault Systems, Concord, USA) 범용 CAD 상에 영상을 불러들여 역설계공학의 방법으로 실린더 상부, 하부의 중점에서의 위치편차와 각도편차를 조사하였다. 통계는 SPSS (release 14.0, SPSS Inc., Chicago, USA)를 이용하여 각 편차 사이의 상관관계를 분석하였다 ($\alpha$ = 0.05). 결과: 위치 편차로 인하여 모든 드릴 보어 (bore)에서 상부 1/2에 잔존하는 거타퍼쳐의 일부를 관찰할 수 있었다. 실험 모형상에서 계획된 이미지와 드릴링 후CT에서 역설계를 거친 이미지 사이의 위치편차는 상부에서 0.31 (0.15 - 0.42) mm, 하부에서 0.36 (0.24 - 0.51) mm, 각도편차는 1.62 (0.54 - 2.27)$^{\circ}$이었다. 실린더 상부와 하부 위치 편차는 양의 상관관계를 가졌다 (Pearson Correlation Coeffocient = 0.904, P= .013). 결론: 좌표동기화 5축 정밀가공 공정은 가이드 수술용 템플릿을 제작하는 데에 적합한 정확도를 가진다.

2열 외부가압 공기 저어널 베어링에서 급기구 위치에 따른 부하지지 특성에 관한 연구 (A Study on the Loading Capacity According to the Source Positions in Externally Pressurized Air Journal Bearing with Two Row Sources)

  • 이종열;성승학;이득우
    • Tribology and Lubricants
    • /
    • 제17권5호
    • /
    • pp.365-372
    • /
    • 2001
  • This paper has been presented the hydrodynamic effect by the journal speed, eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from existed investigations in the side of pressure distribution of air film because of the high speed of journal and the wedge effects by the eccentricity. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. In this paper, The pressure behavior in theory of air film according to the eccentricity of journal and the source positions analyzed. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.

A Study on Hydrodynamic Coefficient Characteristics of Air Bearing for High Speed Journal

  • Lee, Jong-Ryul;Lee, Deug-Woo;Soeng, Sueng-Hak;Lee, Yong-Chul
    • KSTLE International Journal
    • /
    • 제4권2호
    • /
    • pp.66-72
    • /
    • 2003
  • This paper presents the hydrodynamic effect by the journal speed, eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from existing investigations in the side of pressure distribution of air film because of the high speed of journal and the wedge effects by the eccentricity. These optimal choices of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high-speed spindle. In this paper, The pressure behavior in theory of air film in high speed region of journal according to the eccentricity of journal and the source positions analyzed. The theoretical analysis has been identified by experiments. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high-speed milling.