• Title/Summary/Keyword: SiRNA

Search Result 631, Processing Time 0.024 seconds

Adipocyte-Related Genes and Transcription Factors were Affected by siRNA for Aromatase Gene during 3T3-L1 Differentiation (지방세포 분화중인 3T3-L1 세포에서 아로마테이즈 siRNA 처리에 의한 지방관련 유전자와 전사인자의 발현 조절)

  • Jeong, Dong-Kee
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1600-1605
    • /
    • 2008
  • This study was performed to verify the gene expression of 3T3-L1 using the siRNA of the aromatase gene, which is the estrogen synthesis enzymes. First of all three pairs of siRNA were designed from the CYP19A1 (aromatase) and analyzed the formation of fat cell mechanism by transferring gene to 3T3-L1 and differentiating it. As a result, the expression of leptin gene, which is the main gene causing the obesity, was controlled and the cause of the obesity is related with the insulin specifically. The overexpression of adiponectin and adipsin was observed. This result showed that the formation of the fat was controlled a little without any side effect by obstructing a specific material out of all the signal systems in the fat formation. This study will be an important clue to make it clear that the lack or overexpression of estrogen might be the cause of fat formation mechanism.

Effects of PTTG Down-regulation on Proliferation and Metastasis of the SCL-1 Cutaneous Squamous Cell Carcinoma Cell Line

  • Xia, Yong-Hua;Li, Min;Fu, Dan-Dan;Xu, Su-Ling;Li, Zhan-Guo;Liu, Dong;Tian, Zhong-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6245-6248
    • /
    • 2013
  • Aims: To study effects of down-regulation of pituitary tumor-transforming gene (PTTG) on proliferation and metastasis ability of the SCL-1 cutaneous squamous cell carcinoma (CSCC) cell line and explore related mechanisms. Methods: SCL-1 cells were divided into 3 groups (untreated, siRNA control and PTTG siRNA). Cell proliferation assays were performed using a CCK-8 kit and proliferation and metastasis ability were analyzed using Boyden chambers. In addition, expression of MMP-2 and MMP-9 was detected by r-time qPCR and Western blotting. Results: Down-regulation of PTTG could markedly inhibit cell proliferation in SCL-1 cells, compared to untreated and control siRNA groups (P < 0.05). Real-time qPCR demonstrated that expression levels of PTTG, MMP-2 and MMP-9 in the PTTG siRNA group were 0.8%, 23.2% and 21.3% of untreated levels. Western blotting revealed that expression of PTTG, MMP-2 and MMP-9 proteins in the PTTG siRNA group was obviously down-regulated. The numbers of migrating cells ($51.38{\pm}4.71$) in the PTTG siRNA group was obviously lower than that in untreated group ($131.33{\pm}6.12$) and the control siRNA group ($127.72{\pm}5.20$) (P < 0.05), suggesting that decrease of proliferation and metastasis ability mediated by PTTG knock-down may be closely correlated with down-regulation of MMP-2 and MMP-9 expression. Conclusion: Inhibition of PTTG expression may be a new target for therapy of CSCC.

Assessment of Biomarkers in Acetaminophen-Induced Hepatic Toxicity by siRNA

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • v.17 no.4
    • /
    • pp.438-445
    • /
    • 2009
  • We investigated global gene expression from both mouse liver and mouse hepatic cell lines treated with acetaminophen (APAP) in order to compare in vivo and in vitro profiles and to assess the feasibility of the two systems. During our analyses of gene expression profiles, we picked up several down-regulated genes, such as the cytochrome P450 family 51 (Cyp51), sulfotransferase family cytosolic 1C member 2 (Sult1c2), 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (Hmgcs1), and several genes that were up-regulated by APAP, such as growth arrest and DNA-damage-inducible 45 alpha (Gadd45a), transformation related protein 53 inducible nuclear protein 1 (Trp53inp1) and zinc finger protein 688 (Zfp688). For validation of gene function, synthesized short interfering RNAs (siRNAs) for these genes were transfected in a mouse hepatic cell line, BNL CL.2, for investigation of cell viability and mRNA expression level. We found that siRNA transfection of these genes induced down-regulation of respective mRNA expression and decreased cell viability. siRNA transfection for Cyp51 and others induced morphological alterations, such as membrane thickening and nuclear condensation. Taken together, siRNA transfection of these six genes decreased cell viability and induced alteration in cellular morphology, along with effective inhibition of respective mRNA, suggesting that these genes could be associated with APAP-induced toxicity. Furthermore, these genes may be used in the investigation of hepatotoxicity, for better understanding of its mechanism.

The Role of CTGF in Osteosarcoma Progression (골육종에서 CTGF의 발현과 발암기전에서의 역할)

  • Han, Ilkyu;Lee, Mi Ra;Kim, Han-Soo
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Purpose: To examine the expression of Connective Tissue Growth Factor (CTGF) in osteosarcoma and to evaluate its role in osteosarcoma invasion and proliferation. Materials and Methods: The mRNA expression of CTGF from 23 patient-derived osteosarcoma cell lines was examined, and the role of CTGF in cell invasion and proliferation was examined using siRNA transfection. Results: The over-expression of CTGF mRNA was observed in 17 cell lines (74%). CTGF-specific siRNA transfection into SaOS-2 and MG63 cell lines resulted in efficient knockdown of CTGF expression on Western blot analysis. siRNA transfected cells showed decreased migration on Matrigel invasion assay and decreased cell proliferation on WST-1 assay. Conclusion: These results indicated that the CTGF expression may play an important role in osteosarcoma progression, and may be a therapeutic target of osteosarcoma.

Role of Caveolin-1 in Indomethacin-induced Death of Human Hepato-adenocarcinoma SK-Hep1 Cells

  • Kim, Kyung-Nam;Kang, Ju-Hee;Yim, Sung-Vin;Park, Chang-Shin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.143-148
    • /
    • 2008
  • Caveolin-1 (CAV1) is an integral membrane protein that may function as a scaffold for plasma membrane proteins and acts as a tumor suppressor protein. One causative factor of chemotherapy-resistant cancers is P-plycoprotein (P-gp), the product of the multidrug resistance-1 gene (MDR1), which is localized in the caveolar structure. Currently, the interactive roles of CAV1 and MDR1 expression in the death of cancer cells remain controversial. In this study, we investigated the effects of indomethacin on the cell viability and the expression levels of MDR1 mRNA and protein in a CAV1-siRNA-mediated gene knockdown hepatoma cell line (SK-Hep1). Cell viability was significantly decreased in CAV1-siRNA-transfected cells compared with that of control-siRNA-transfected cells. Furthermore, the viability of cells pretreated with CAV1 siRNA was markedly decreased by treatment with indomethacin (400${\mu}$M for 24 h). However, the protein and mRNA levels of MDR1 were unchanged in CAV1-siRNA-transfected cells. These results suggest that CAV1 plays an important role as a major survival enzyme in cancer cells, and indomethacin can sensitively induce cell death under conditions of reduced CAV1 expression, independent of MDR1 expression.

Role of HOXA Gene in Human Endometrial Decidualization (인간 자궁내막의 탈락막화에서 HOXA10 유전자의 역할)

  • Lee, Chang-Se;Park, Dong-Wook;Park, Chan-Woo;Kim, Tae-Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.3
    • /
    • pp.207-216
    • /
    • 2010
  • Objective: This study was performed to clarify the role of HomeoboxA (HOXA) and its related signaling molecules in the decidualization of primary cultured endometrial cells. Methods: Human endometrial tissues were obtained by curettage of hysterectomy specimens from patients with conditions other than endometrial diseases. Tissues were minced and digested with Trypsin-EDTA for 20 min, $37^{\circ}C$. Cells were cultured with DMEM/F12 medium in $37^{\circ}C$, 5% $CO_2$ incubator for 24 hrs. Cells were treated with HOXA10 siRNA and added transforming growth factor (TGF)-${\beta}1$ (10 ng/mL) for 48 hrs to induces decidualization in vitro. Reverse transcription polymerase chain reaction analysis was accomplished to observe the expression of HOXA10, prolactin, cyclooxygenase (COX)-2, peroxisome proliferatoractivated receptor (PPAR)-$\gamma$, and wingless-type MMTV integration site family (Wnt). Results: HOXA10 expression was increased (1.8 fold vs. non-treated control) in TGF-${\beta}1$ treated cells. Decidualization marker, prolactin, was significantly increased in TGF-${\beta}1$ treated cells compared with HOXA10 siRNA treated cells. Endometrial cell differentiation marker, COX-2 was down-regulated by HOXA10 siRNA even if cells were treated with TGF-${\beta}1$. Wnt4 was down-regulated by treated with HOXA10 siRNA, this expression patters was not changed by TGF-${\beta}1$. Expression of PPAR-$\gamma$ was down regulated by TGF-${\beta}1$ in regardless of HOXA10 siRNA treatment. Conclusion: TGF-${\beta}1$ which is induced by progesterone in endometrial epithelial cells may induces stromal cell decidualization via HOXA10 and Wnt signaling cascade.

Calculations of Free Energy Surfaces for Small Proteins and a Protein-RNA Complex Using a Lattice Model Approach

  • Lee, Eun-Sang;Jung, Youn-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3051-3056
    • /
    • 2011
  • We calculate the free energy surfaces for two small proteins and a protein-RNA complex system by using a lattice model approach. In particular, we employ the Munoz-Eaton model, which is a native-structure based statistical mechanical model for studying protein folding problem. The model can provide very useful insights into the folding mechanisms by allowing one to calculate the free energy surfaces efficiently. We first calculate the free energy surfaces of ubiquitin and BBL, using both approximate and recently developed exact solutions of the model. Ubiquitin exhibits a typical two-state folding behavior, while BBL downhill folding in our study. We then extend the method to study of a protein-RNA complex. In particular, we focus on PAZ-siRNA complex. In order to elucidate the interplay between folding and binding kinetics for this system we perform comparative studies of PAZ only, PAZ-siRNA complex and two mutated complexes. We find that folding and binding are strongly coupled with each other and the bound PAZ is more stable than the unbound PAZ. Our results also suggest that the binding sites of the siRNA may serve act as a nucleus in the folding process.

Suppression of CDK2 expression by siRNA induces cell cycle arrest and cell proliferation inhibition in human cancer cells

  • Long, Xiang-E.;Gong, Zhao-Hui;Pan, Lin;Zhong, Zhi-Wei;Le, Yan-Ping;Liu, Qiong;Guo, Jun-Ming;Zhong, Jiu-Chang
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.291-296
    • /
    • 2010
  • Cyclin-dependent kinase 2 (CDK2) is a member of serine/threonine protein kinases, which initiates the principal transitions of the eukaryotic cell cycle and is a promising target for cancer therapy. The present study was designed to inhibit cdk2 gene expression to induce cell cycle arrest and cell proliferation suppression. Here, we constructed a series of RNA interference (RNAi) plasmids which can successfully express small interference RNA (siRNA) in the transfected human cells. The results showed that the RNAi plasmids containing the coding sequences for siRNAs down-regulated the cdk2 gene expression in human cancer cells at the mRNA and the protein levels. Furthermore, we found that the cell cycle was arrested at G0G1 phases and the cell proliferation was inhibited by different siRNAs. These results demonstrate that suppression of CDK2 activity by RNAi may be an effective strategy for gene therapy in human cancers.

Soybean mosaic virus Infection and Helper Component-protease Enhance Accumulation of Bean pod mottle virus-Specific siRNAs

  • Lim, Hyoun-Sub;Jang, Chan-Yong;Bae, Han-Hong;Kim, Joon-Ki;Lee, Cheol-Ho;Hong, Jin-Sung;Ju, Ho-Jong;Kim, Hong-Gi;Domier, Leslie L.
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.315-323
    • /
    • 2011
  • Soybean plants infected with Bean pod mottle virus (BPMV) develop acute symptoms that usually decrease in severity over time. In other plant-virus interactions, this type of symptom recovery has been associated with degradation of viral RNAs by RNA silencing, which is accompanied by the accumulation of virus-derived small interfering RNAs (siRNAs). In this study, changes in the accumulation of BPMV siRNAs were investigated in soybean plants infected with BPMV alone, or infected with both BPMV and Soybean mosaic virus (SMV) and in transgenic soybean plants expressing SMV helper component-protease (HC-Pro). In many potyviruses, HC-Pro is a potent suppressor of RNA silencing. In plants infected with BPMV alone, accumulation of siRNAs was positively correlated with symptom severity and accumulation of BPMV genomic RNAs. Plants infected with both BPMV and SMV and BPMV-infected transgenic soybean plants expressing SMV HC-Pro exhibited severe symptoms characteristic of BPMVSMV synergism, and showed enhanced accumulation of BPMV RNAs and siRNAs compared to plants infected with BPMV alone and nontransgenic plants. Likewise, SMV HC-Pro enhanced the accumulation of siRNAs produced from a silenced green fluorescent protein gene in transient expression assays, while the P19 silencing suppressor of Tomato bushy stunt virus did not. Consistent with the modes of action of HC-Pro in other systems, which have shown that HC-Pro suppresses RNA silencing by preventing the unwinding of duplex siRNAs and inhibiting siRNA methylation, these studies showed that SMV HC-Pro interfered with the activities of RNA-induced silencing complexes, but not the activities of Dicer-like enzymes in antiviral defenses.

RNAi-induced K-Ras Gene Silencing Suppresses Growth of EC9706 Cells and Enhances Chemotherapy Sensitivity of Esophageal Cancer

  • Wang, Xin-Jie;Zheng, Yu-Ling;Fan, Qing-Xia;Zhang, Xu-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6517-6521
    • /
    • 2012
  • To analyze the growth, proliferation, apoptosis, invasiveness and chemotherapy sensitivity of EC9706 cells after K-Ras gene silencing, an expression carrier pSilencer-siK-Ras was constructed, and the EC9706 cell line was transfected using a liposome technique. Six groups were established: Control, siRNA NC (transfected with empty vector pSilencer2.1); Ras siRNA (transfected with pSilencer-siK-Ras2); Paclitaxel; Paclitaxel + siRNA NC; and Ras siRNA + Paclitaxel. After the treatment, RT-PCR, Western blotting, MTT assay, flow cytometry and the Transwell technique were used to assess expression of K-Ras mRNA and protein in EC9706 cells, as well as cell growth, proliferation, apoptosis and invasiveness. The effect of Paclitaxel chemotherapy was also tested. pSilencer-siK-Ras2 effectively down-regulated expression of K-Ras mRNA and protein in EC9706 cells, growth being significantly inhibited. Flow cytometry indicated obvious apoptosis of cells in the experimental group, with arrest in the G1 phase; cell migration ability was also reduced. After pSilencer-siK-Ras2 transfection or the addition of Paclitaxel, EC9706 cells were suppressed to different extents; the suppressive effect was strengthened by combined treatment. The results suggested that RNAi-induced K-Ras gene silencing could enhance chemotherapy sensitivity of esophageal cancer.