Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.4.291

Suppression of CDK2 expression by siRNA induces cell cycle arrest and cell proliferation inhibition in human cancer cells  

Long, Xiang-E. (School of Medicine, Ningbo University)
Gong, Zhao-Hui (School of Medicine, Ningbo University)
Pan, Lin (School of Medicine, Ningbo University)
Zhong, Zhi-Wei (School of Medicine, Ningbo University)
Le, Yan-Ping (School of Medicine, Ningbo University)
Liu, Qiong (School of Medicine, Ningbo University)
Guo, Jun-Ming (School of Medicine, Ningbo University)
Zhong, Jiu-Chang (School of Medicine, Ningbo University)
Publication Information
BMB Reports / v.43, no.4, 2010 , pp. 291-296 More about this Journal
Abstract
Cyclin-dependent kinase 2 (CDK2) is a member of serine/threonine protein kinases, which initiates the principal transitions of the eukaryotic cell cycle and is a promising target for cancer therapy. The present study was designed to inhibit cdk2 gene expression to induce cell cycle arrest and cell proliferation suppression. Here, we constructed a series of RNA interference (RNAi) plasmids which can successfully express small interference RNA (siRNA) in the transfected human cells. The results showed that the RNAi plasmids containing the coding sequences for siRNAs down-regulated the cdk2 gene expression in human cancer cells at the mRNA and the protein levels. Furthermore, we found that the cell cycle was arrested at G0G1 phases and the cell proliferation was inhibited by different siRNAs. These results demonstrate that suppression of CDK2 activity by RNAi may be an effective strategy for gene therapy in human cancers.
Keywords
Cell cycle; Cell proliferation; Cyclin-dependent kinase 2; RNA interference; Small interference RNA;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Neganova, I., Zhang, X., Atkinson, S. and Lako, M. (2009) Expression and functional analysis of G1 to S regulatory components reveals an important role for cdk2 in cell cycle regulation in human embryonic stem cells. Oncogene 28, 20-30   DOI   ScienceOn
2 Murray, A. W. (2004) Recycling the Cell Cycle: Cyclins Revisited. Cell 116, 221-334   DOI   PUBMED   ScienceOn
3 Wandl, S. and Wesierska-Gadek, J. (2009) Is olomoucine, a weak cdk2 inhibitor, able to induce apoptosis in cancer cells? Ann. N Y Acad. Sci. 1171, 242-249   DOI   ScienceOn
4 Bantounas, I., Phylactou, L. A. and Uney, J. B. (2004) RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J. Mol. Endocrinol. 33, 545-557   DOI   ScienceOn
5 Kim, D. and Rossi, J. (2008) RNAi mechanisms and applications. Biotechniques 44, 613-616   DOI   PUBMED   ScienceOn
6 Kim, J., Kim, H., Lee, Y., Yang, K., Byun, S. and Han, K. (2006) A simple and economical short-oligonucleotidebased approach to shRNA generation. J. Biochem. Mol. Biol. 39, 329-334   DOI   PUBMED
7 Sui, G., Soohoo, C., Affarel, B., Gay, F., Shi, Y., Forrester, W. C. and Shi, Y. (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 99, 5515-5520   DOI   ScienceOn
8 Wu, H., Hait, W. N. and Yang, J. M. (2003) Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res. 63, 1515-1519   PUBMED
9 Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S. and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326-330   DOI   ScienceOn
10 Elbashir, S. M., Lendeckel, W. and Tuschl, T. (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188-200   DOI   ScienceOn
11 Nurse, P. (2002) Cyclin dependent kinases and cell cycle control (nobel lecture). Chembiochem. 3, 596-603   DOI   PUBMED   ScienceOn
12 Lapteva, N., Yang, A. G., Sanders, D. E., Strube, R. W. and Chen, S. Y. (2005) CXCR4 knokdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther. 12, 84-89   DOI   ScienceOn
13 Whelan, J., Patterson, D., Perisoglou, M., Bielack, S., Marina, N., Smeland, S. and Bernstein, M. (2010) The role of interferons in the treatment of osteosarcoma. Pediatr Blood Cancer 54, 350-354   DOI   ScienceOn
14 Lai, S. R., Andrews, L. G. and Tollefsbol, T. O. (2007) RNA interference using a plasmid construct expressing short-hairpin RNA. Methods Mol. Biol. 405, 31-37   DOI   PUBMED   ScienceOn
15 Larochelle, S., Merrick, K. A., Terret, M. E., Wohlbold, L., Barboza, N. M., Zhang, C., Shokat, K. M., Jallepalli, P. V. and Fisher, R. P. (2007) Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of cdk2 revealed by chemical genetics in human cells. Mol. Cell 25, 839-850   DOI   ScienceOn
16 Li, X., Kim, J. W., Grønborg, M., Urlaub, H., Lane, M. D. and Tang, Q. Q. (2007) Role of cdk2 in the sequential phosphorylation/activation of C/EBP during adipocyte differentiation. Proc. Natl. Acad. Sci. U.S.A. 104, 11597-11602   DOI   ScienceOn
17 Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811   DOI   ScienceOn
18 Du, J., Widlund, H. R., Horstmann, M. A., Ramaswamy, S., Ross, K., Huber, W. E., Nishimura, E. K., Golub, T. R. and Fisher, D. E. (2004) Critical role of cdk2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 6, 565-576   DOI   ScienceOn
19 McIntyre, G. J. and Fanning, G. C. (2006) Design and cloning strategies for constructing shRNA expression vectors. BMC Biotechnol. 6, 1-8   DOI   PUBMED
20 Gong, L., Jiang, C., Zhang, B., Hu, H., Wang, W. and Liu, X. (2006) Adenovirus-mediated expression of both antisense ornithine decarboxylase and S-adenosylmethionine decarboxylase induces G1 arrest in HT-29 Cells. J. Biochem. Mol. Biol. 39, 730-736   DOI   PUBMED
21 M$\ddot{u}$ller, C. R., Smeland, S., Bauer, H. C., Saeter, G. and Strander, H. (2005) Interferon-alpha as the only adjuvant treatment in high-grade osteosarcoma: long term results of the Karolinska Hospital series. Acta Oncol. 44, 475-480   DOI   ScienceOn
22 Kawasaki, H. and Taira, K. (2003) Short hairpin type of dsRNAs that are controlled by tRNAVal promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res. 31, 700-707   DOI   ScienceOn
23 Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. and Sharp, P. A. (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13, 3191-3197   DOI   ScienceOn
24 Nakano, T., Kato, S., Ohno, T., Tsujii, H., Sato, S., Fukuhisa, K. and Arai, T. (2005) Long-term results of highdose rate intracavitary brachytherapy for squamous cell carcinoma of the uterine cervix. Cancer 103, 92-101   DOI   ScienceOn
25 Whitehead, K. A., Langer, R. and Anderson, D. G. (2009) Knocking down barriers:advances in siRNA delivery. Nat. Rev. Drug. Discov. 8, 129-138   DOI   ScienceOn
26 Narayanan, R., Adigun, A. A., Edwards, D. P. and Weigel, N. L. (2005) Cyclin-dependent kinase activity is required for progesterone receptor function: novel role for cyclin A/cdk2 as a progesterone receptor coactivator. Mol. Cell Biol. 25, 264-277   DOI   ScienceOn
27 Nakano, T., Ohno, T., Ishikawa, H., Suzuki, Y. and Takahashi, T. (2010) Current advancement in radiation therapy for uterine cervical cancer. J. Radiat. Res. (Tokyo) 51, 1-8   DOI   ScienceOn
28 Li, K., Lin, S. Y., Brunicardi, F. C. and Seu, P. (2003) Use of RNA interference to target cyclin E-overexpressing hepatocellular carcinoma. Cancer Res. 63, 3593-3597   PUBMED
29 Messerschmitt, P. J., Garcia, R. M., Abdul-Karim, F. W., Greenfield, E. M. and Getty, P. J. (2009) Osteosarcoma. J. Am. Acad. Orthop. Surg. 17, 515-527   DOI   PUBMED
30 Park, K. J. and Soslow, R. A. (2009) Current concepts in cervical pathology. Arch.Pathol. Lab. Med. 133, 729-738   PUBMED
31 Martin, S. E. and Caplen, N. J. (2007) Applications of RNA interference in mammalian systems. Annu. Rev. Genomics Hum. Genet. 8, 81-108   DOI   ScienceOn
32 Shukla, V., Coumoul, X. and Deng, C. X. (2007) RNAi-based conditional geneknockdown in mice using a U6 promoter driven vector. Int. J. Biol. Sci. 3, 91-99   DOI   PUBMED
33 Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-498   DOI   ScienceOn
34 Fjose, A., Ellingsen, S., Wargelius, A. and Seo H. C. (2001) RNA interference: mechanisms and applications. Biotechnol. Annu. Rev. 7, 31-57   DOI   PUBMED
35 Jablonska, B., Aguirre, A., Vandenbosch, R., Belachew, S., Berthet, C., Kaldis, P. and Gallo, V. (2007) cdk2 is critical for proliferation and self-renewal of neural progenitor cells in the adult subventricular zone. J. Cell Biol. 179, 1231-1245   DOI   ScienceOn
36 Schwartz, L. A. (2009) Cervical cancer: disease prevention and informational support. Can. Oncol. Nurs. J. 19, 6-9   DOI   PUBMED   ScienceOn
37 Ammosova, T., Berro, R., Kashanchi, F. and Nekhai, S. (2005) RNA interference directed to cdk2 inhibits HIV-1 transcription. Virology 341, 171-178   DOI   ScienceOn
38 Xu, X. M., Wang, D., Shen, Q., Chen, Y. Q. and Wang, M. H. (2004) RNA-mediated gene silencing of the RON receptor tyrosine kinase alters oncogenic phenotypes of human colorectalcarcinoma cells. Oncogene 23, 8464-8474   DOI   ScienceOn
39 Zeng, Y. and Cullen, B. R. (2002) RNA interference in human cells is restricted to the cytoplasm. RNA 8, 855-860   DOI   ScienceOn