• Title/Summary/Keyword: SiOF Thin Film

Search Result 2,900, Processing Time 0.033 seconds

CharacteristicProperties of Low-k Thin Film Deposited by Sputtering (스퍼터링에 의한 Low-k 박막의 특성)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3160-3164
    • /
    • 2012
  • To obtain available process at low temperature, SiOC thin film was prepared with various flow rates by using the rf magnetron sputtering, and AZO thin film was also deposited on SiOC film by rf magnetron sputtering system. The optical electrical properties of the SiOC film and SiOC/AZO were analyzed by the uv visible spectrometer and PL spectra. SiOC film on n type Si showed various type emission according to the deposition condition. The SiOC film showed the blue shift with increasing the thickness in PL spectra. AZO/SiOC/Si film had a broad emission characteristic, which is enhanced the efficiency in solar cell.

Growth of polycrystalline 3C-SiC thin films for M/NEMS applications by CVD (CVD에 의한 M/NEMS용 다결정 3C-SiC 박막 성장)

  • Chung, Gwiy-Sang;Kim, Kang-San;Jeong, Jun-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.85-90
    • /
    • 2007
  • This paper presents the growth conditions and characteristics of polycrystalline 3C-SiC (silicon carbide) thin films for M/NEMS applications related to harsh environments. The growth of the 3C-SiC thin film on the oxided Si wafers was carried out by APCVD using HMDS (hexamethyildisilane: $Si_{2}(CH_{3})_{6})$ precursor. Each samples were analyzed by XRD (X-ray diffraction), FT-IR (fourier transformation infrared spectroscopy), RHEED (reflection high energy electron diffraction), GDS (glow discharge spectrometer), XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscope) and TEM (tunneling electro microscope). Moreover, the electrical properties of the grown 3C-SiC thin film were evaluated by Hall effect. From these results, the grown 3C-SiC thin film is very good crystalline quality, surface like mirror and low defect. Therefore, the 3C-SiC thin film is suitable for extreme environment, Bio and RF M/NEMS applications in conjunction with Si fabrication technology.

A Study on the Silicon Nitride for the poly-Si Thin film Transistor (다결정 박막 트랜지스터 적용을 위한 SiNx 박막 연구)

  • 김도영;김치형;고재경;이준신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1175-1180
    • /
    • 2003
  • Transformer Coupled Plasma Chemical Vapor Deposited (TCP-CVD) silicon nitride (SiNx) is widely used as a gate dielectric material for thin film transistors (TFT). This paper reports the SiNx films, grown by TCP-CVD at the low temperature (30$0^{\circ}C$). Experimental investigations were carried out for the optimization o(SiNx film as a function of $N_2$/SiH$_4$ flow ratio varying ,3 to 50 keeping rf power of 200 W, This paper presents the dielectric studies of SiNx gate in terms of deposition rate, hydrogen content, etch rate and leakage current density characteristics lot the thin film transistor applications. And also, this work investigated means to decrease the leakage current of SiNx film by employing $N_2$ plasma treatment. The insulator layers were prepared by two step process; the $N_2$ plasma treatment and then PECVD SiNx deposition with SiH$_4$, $N_2$gases.

Metal-assisted grown Si films and semiconducting nanowires for solar cells

  • Kim, Jun-Dong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.13-13
    • /
    • 2010
  • The solar energy conversion will take 10 % global energy need by 2033. A thin film type solar cell has been considered as one of the promising candidates for a large area applicable solar cell fabrication at a low cost. The metal-assisted growth of microcrystalline Si (mc-Si) films has been reported for a quality Si film synthesis at a low temperature. It discusses the spontaneous growth of a Si film above a metal-layer for a thin film solar cell. Quite recently, a substantial demand of nanomaterials has been addressed for cost-effective solar cells. The nanostructure provides a large photoactive surface at a fixed volume, which is an advantage in the effective use of solar power. But the promising of nanostructure active solar cell has not been much fulfilled due mainly to the difficulty in architecture of nanostructures. We present here the Si nanowire (SiNW)-embedded Schottky solar cell. Multiple SiNWs were connected to two different metals to form a Schottky or an ohmic contact according to the metal work function values. It discusses the scheme of rectifying contact between metals and SiNWs and the SiNW-embedded Schottky solar cell performances.

  • PDF

The dielectric properties of triple SiO thin film using spectroscopic ellipsometer (Spectroscopic ellipsometer를 이용한 삼원 SiO박막의 증착조건에 따른 유전율 특성)

  • 김창석;황석영
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.129-135
    • /
    • 1995
  • SiO thin films are deposited by evaporator the refractive index of wave length, photon energy and the absorptive rate of these films are measured by spectroscopic ellipsometer. It is derived the absorptive rate and permitivity of SiO thin films from the equations that calculating the refractive index. And the result show good agreement with the calculated values and experimental values. As a result, the wave length of light is increased in the condition that the angle of incidence is fixed on SiO thin film, the basic absorption and the absorption impurities are found in the low wave length (below 450 nm in this study) and the reflective absorption and conductive absorption is increased by the form of exponential function over the low wavelength. The absorptive rate is increased by increased the angle of incidence and thickness of SiO film for the insulating layer. As the thickness of SiO film is increased, the value of complex permitivity is decreasing and as wave length of incidence is increased., the value of dielectric is linearly increasing.

  • PDF

Preparation and properties of BST (Barium Strontium Titanate) thin films for the capacitor dielectrics of ULSI DRAM's (ULSI DRAM의 capacitor 절연막용 BST(Barium Strontium Titanate)박막의 제작과 특성에 관한 연구)

  • 류정선;강성준;윤영섭
    • Electrical & Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.336-343
    • /
    • 1996
  • We have studied the preparation and the properties of $Ba_{1-x}$Sr$_{x}$TiO$_{3}$(BST) thin films by using the sol-gel method. Through the comparison of the effects of various solvents and additives in making solutions, we establish the production method of the stable solution which generates the high quality of BST film. We also set up the heat-treatment conditions for depositing the BST thin film through the TGA and XRD analyses. Through the comparison of the surface conditions of BST films deposited on Pt/Ta/SiO$_{2}$/Si and Pt/Ti/SiO$_{2}$/Si substrates, we find that Ta is more efficient diffusion barrier of Si than Ti so that Ta layer prevents the formation of hillocks. We fabricate the planar type capacitor and measure the dielectric properties of the BST thin film deposited on the Pt/Ta/SiO$_{2}$/Si substrate. Dielectric constant and dielectric loss tangent at 1V, 10kHz, and leakage current density at 3V of the BST thin film are 339, 0.052 and 13.3.mu.A/cm$^{2}$, respectively.ely.

  • PDF

Deposition of Tungsten Thin Film on Silicon Surface by Low Pressure Chemical Vapor Deposition Method (저압 화학 기상 증착법을 이용한 실리콘 표면 위의 텅스텐 박막의 증착)

  • Kim, Seong Hun
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.7
    • /
    • pp.473-479
    • /
    • 1994
  • Tungsten thin film was deposited on p-(100) silicon substrate by using the LPCVD(low pressure chemical vapor deposition) technique. $WF_6$ was used as a source gas for tungsten and $SiH_4$ was used as a reducing gas for $WF_6$. Tungsten thin film was deposited by either SiH4 or Si substrate reduction of $WF_6$ under cold-wall condition and it was deposited by $SiH_4$ reduction of $WF_6$ under hot-wall condition. The crystal structure of deposited thin film under both conditions were identified to be bcc (body centered cubic). The physical and electrical properties of deposited thin films were investigated. The deposited film under hot-wall condition changed to $WSi_2$ film by the annealing under $800^{\circ}C.$ From the experimental results and theoretical considerations, the change of the crystal structure of the thin film by annealing was discussed. $WSi_2$ thin film, which was known to have good compatibility with Si substrate, could be produced under hot-wall condition although the film properties were superior under cold-wall condition.

  • PDF

Novel deposition technology for nano-crystalline silicon thin film at low temperature by hyper-thermal neutral beam assisted CVD system

  • Jang, Jin-Nyoung;Song, Byoung-Chul;Oh, Kyoung-Suk;Yoo, Suk-Jae;Lee, Bon-Ju;Choi, Soung-Woong;Park, Young-Chun;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1025-1027
    • /
    • 2009
  • Novel low temperature deposition process for nano-crystalline Si thin film is developed with the hyper-thermal neutral beam (HNB) technology. By our HNB assisted CVD system, the reactive particles can induce crystalline phase in Si thin films and effectively combine with heating effect on substrate. At low deposition temperature under $80^{\circ}C$, the HNB with proper incident energy controlled by the reflector bias can effectively enhance the nano-crystalline formation in Si thin film without any additional process. The electrical properties of Si thin films can be varied from a-Si to nc-Si according to change of HNB energy and substrate temperature. Characterization of these thin films with conductivity reveal that crystalline of Si thin film can increase by assist of HNB with appropriate energy during low temperature deposition. And low temperature prcoessed nc-Si TFT performance has on-off ratio as order 5.

  • PDF

Anti-Reflective Coating with Hydrophilic/Abraion-Resistant Properties using TiO2/SiOxCy Double-Layer Thin Film (TiO2/SiOxCy 이중 박막을 이용한 투명 친수성/내마모성 반사방지 코팅)

  • Lee, Sung-jun;Lee, Min-kyo;Park, Young-chun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.345-351
    • /
    • 2017
  • A double-layered anti-reflective coating with hydrophilic/abrasion-resistant properties was studied using anatase titanium dioxide($TiO_2$) and silicon oxycarbide($SiO_xC_y$) thin film. $TiO_2$ and $SiO_xC_y$ thin films were sequentially deposited on a glass substrate by DC sputtering and PECVD, respectively. The optical properties were measured by UV-Vis-NIR spectrophotometer. The abrasion-resistance and the hydrophilicity were observed by a taber abrasion tester and a contact angle analyzer, respectively. The $TiO_2/SiO_xC_y$ double-layer thin film had an average transmittance of 91.3%, which was improved by 10% in the visible light region (400 to 800 nm) than that of the $TiO_2$ single-layer thin film. The contact angle of $TiO_2/SiO_xC_y$ film was $6.9^{\circ}$ right after UV exposure. After 9 days from the exposure, the contact angle was $10.2^{\circ}$, which was $33^{\circ}$ lower than that of the $TiO_2$ single-layer film. By the abrasion test, $SiO_xC_y$ film showed a superior abrasion-resistance to the $TiO_2$ film. Consequently, the $TiO_2/SiO_xC_y$ double-layer film has achieved superior anti-reflection, hydrophilicity, and abrasion resistance over the $TiO_2$ or $SiO_xC_y$ single-layer film.