• Title/Summary/Keyword: SiOF Thin Film

Search Result 2,900, Processing Time 0.035 seconds

Development of a Silicon Carbide Large-aperture Optical Telescope for a Satellite (SiC를 이용한 대구경 위성용 망원경 제작)

  • Bae, Jong In;Lee, Haeng Bok;Kim, Jeong Won;Lee, Kyung Mook;Kim, Myung-Whun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.2
    • /
    • pp.74-83
    • /
    • 2022
  • The entire process, from the raw material to the final system qualification test, has been developed to fabricate a large-diameter, lightweight reflective-telescope system for a satellite observation. The telescope with 3 anastigmatic mirrors has an aperture of 700 mm and a total mass of 66 kg. We baked a silicon carbide substrate body from a carbon preform using a reaction sintering method, and tested the structural and chemical properties, surface conditions, and crystal structure of the body. We developed the polishing and coating methods considering the mechanical and chemical properties of the silicon carbide (SiC) body, and we utilized a chemical-vapor-deposition method to deposit a dense SiC thin film more than 170 ㎛ thick on the mirror's surface, to preserve a highly reflective surface with excellent optical performance. After we made the SiC mirrors, we measured the wave-front error for various optical fields by assembling and aligning three mirrors and support structures. We conducted major space-environment tests for the components and final assembly by temperature-cycling tests and vibration-shock tests, in accordance with the qualifications for the space and launch environment. We confirmed that the final telescope achieves all of the target performance criteria.

Electrical and structural properties of back reflecting layer with AZO-Ag bilayer structure on a stainless steel substrate for thin film Si based solar cell applications (Flexible 박막 Si태양전지 응용을 위한 SUS기판 위의 AZO-Ag 이중구조 배면전극의 전기/구조적 특성)

  • Hong, ChangWoo;Choi, YoungSung;Park, Jaecheol;Lee, JongHo;Kim, TaeWon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.125.1-125.1
    • /
    • 2011
  • 빛 에너지를 전기에너지로 변환하는 발전소자인 태양전지는 청정 재생 에너지원으로 최근 Si 박막 태양전지의 고 효율화를 위해 여러 기술적인 면에서 개발되어지고 있다. 현재 박막형 태양전지는 실리콘계가 주류를 이루고 있으며, 유리 혹은 유연성기판(금속 or 고분자)에 비정질 실리콘 박막을 형성시킨 태양전지와 실리콘웨이퍼의 양면에 태양전지를 형성함으로써 효율을 극대화시킨 이종접합태양전지 등이 연구되고 있다. 특히 flexible 태양전지는 hard 기판에 비해 비교적 저가인 플라스틱 필름과 금속 foil을 기판으로 이용함으로서 저가화가 용이하며, 가볍고 유연성을 갖추고 있어 휴대와 시공에 있어 매우 우수한 장점을 가지고 있다. 본 연구에서는 flexible 기판(stainless steel)을 이용하여 태양전지 내 반사막 층이 미치는 영향을 알아보기 위하여 AZO/Ag 이중구조 박막의 특성을 연구하였다. RF magnetron sputtering system을 이용하였으며, 상온에서 Ag/AZO 이중구조 박막을 제조하였다. stainless steel 기판 위에 Ag층을 25nm 두께로 증착하였으며 연속공정으로 AZO 박막을 100~500nm의 두께경사를 가지도록 성장시켰다. 이 때의 AZO/Ag 이중구조 박막의 표면 morphology는 AFM 분석결과 7nm~3nm의 값을 나타내었으며, AZO 박막의 두께가 증가할수록 rms 값이 감소하는 경향을 보여주었다. 본 발표에서는 flexible 기판 상에 성장된 AZO/Ag 이중구조 박막의 전기적, 광학적 특성 등에 관하여 추가적으로 토론한 후 태양전지 효율 중 흡수층 내 반사막 층이 미치는 역할을 알아보겠다.

  • PDF

Deposition and Characteristics of TiN Thin Films by Atomic Layer Epitaxy (ALE 법에 의한 TiN 박막의 증착 및 특성)

  • Kim, Dong-Jin;Jung, Young-Bae;Lee, Myung-Bok;Lee, Jung-Hee;Lee, Yong-Hyun;Hahm, Sung-Ho;Lee, Jong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.43-49
    • /
    • 2000
  • The TiN thin films were deposited by ALE(atomic layer epitaxy) on (100) silicon substrate. The TiN thin films were characterized by means of XRD, 4-point probe, AFM, AES and SEM. TEMAT(terakis(ethyl methy lamino)titanium) and $NH_3$ were injected into the reactor in sequence of TEMAT-$N_2-NH_3-N_2$ to ensure a saturated surface reaction. As a result, the depostion rate of the TiN film was controlled by self-limiting growth mechanism at temperature range form 150 to 220 $^{\circ}C$. Deposited TiN films, all of which show amorphous structure, had a fixed deposition rate of 4.5 ${\AA}$/cycle. The resistivity of 210 ~ 230 ${\mu}{\Omega}{\cdot}$cm and the surface r.m.s. roughness of 7.9 ~ 9.3 ${\AA}$ were measured. When TiN film of 2000 ${\AA}$ were deposited, a excellent step coverage were observed in a trench structure of 0.43${\mu}m$ contacts with 6:1 aspect ratio.

  • PDF

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF

Improved Degradation Characteristics in n-TFT of Novel Structure using Hydrogenated Poly-Silicon under Low Temperature (낮은 온도 하에서 수소처리 시킨 다결정 실리콘을 사용한 새로운 구조의 n-TFT에서 개선된 열화특성)

  • Song, Jae-Ryul;Lee, Jong-Hyung;Han, Dae-Hyun;Lee, Yong-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.105-110
    • /
    • 2008
  • We have proposed a new structure of poly-silicon thin film transistor(TFT) which was fabricated the LDD region using doping oxide with graded spacer by etching shape retio. The devices of n-channel poly-si TFT's hydrogenated by $H_2$ and $HT_2$/plasma processes are fabricated for the devices reliability. We have biased the devices under the gate voltage stress conditions of maximum leakage current. The parametric characteristics caused by gate voltage stress conditions in hydrogenated devices are investigated by measuring /analyzing the drain current, leakage current, threshold voltage($V_{th}$), sub-threshold slope(S) and transconductance($G_m$) values. As a analyzed results of characteristics parameters, the degradation characteristics in hydrogenated n-channel polysilicon TFT's are mainly caused by the enhancement of dangling bonds at the poly-Si/$SiO_2$ interface and the poly-Si Brain boundary due to dissolution of Si-H bonds. The structure of novel proposed poly-Si TFT's are the simplity of the fabrication process steps and the decrease of leakage current by reduced lateral electric field near the drain region.

  • PDF

Ellipsometric study of Mn-doped $Bi_4Ti_3O_{12}$ thin films

  • Yoon, Jae-Jin;Ghong, Tae-Ho;Jung, Yong-Woo;Kim, Young-Dong;Seong, Tae-Geun;Kang, Lee-Seung;Nahm, Sahn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.173-173
    • /
    • 2010
  • $Bi_4Ti_3O_{12}$ ($B_4T_3$) is a unique ferroelectric material that has a relatively high dielectric constant, high Curie temperature, high breakdown strength, and large spontaneous polarization. As a result this material has been widely studied for many applications, including nonvolatile ferroelectric random memories, microelectronic mechanical systems, and nonlinear-optical devices. Several reports have appeared on the use of Mn dopants to improve the electrical properties of $B_4T_3$ thin films. Mn ions have frequently been used for this purpose in thin films and multilayer capacitors in situations where intrinsic oxygen vacancies are the major defects. However, no systematic study of the optical properties of $B_4T_3$ films has appeared to date. Here, we report optical data for these films, determined by spectroscopic ellipsometry (SE). We also report the effects of thermal annealing and Mn doping on the optical properties. The SE data were analyzed using a multilayer model that is consistent with the original sample structure, specifically surface roughness/$B_4T_3$ film/Pt/Ti/$SiO_2$/c-Si). The data are well described by the Tauc-Lorentz dispersion function, which can therefore be used to model the optical properties of these materials. Parameters for reconstructing the dielectric functions of these films are also reported. The SE data show that thermal annealing crystallizes $B_4T_3$ films, as confirmed by the appearance of $B_4T_3$ peaks in X-ray diffraction patterns. The bandgap of $B_4T_3$ red-shifts with increasing Mn concentration. We interpret this as evidence of the existence deep levels generated by the Mn transition-metal d states. These results will be useful in a number of contexts, including more detailed studies of the optical properties of these materials for engineering high-speed devices.

  • PDF

Photocurrent study on the splitting of the valence band and growth of $CdGa_2Se_4$ single crystal thin film by hot wall epitaxy (Hot Wall epitaxy(HWE)법에 의한 $CdGa_2Se_4$ 단결정 박막의 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.179-186
    • /
    • 2007
  • Single crystal $CdGa_2Se_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with the hot wall epitaxy(HWE) system by evaporating the polycrystal source of $CdGa_2Se_4$ at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of single crystal $CdGa_2Se_4$ thin films measured with Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3},\;345cm^2/V{\cdot}s$ at 293 K, respectively. The photocurrent and the absorption spectra of $CdGa_2Se_4/SI$(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $CdGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation $E_g(T)=2.6400eV-(7.721{\times}10^{-4}eV/K)T^2/(T+399K)$. Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) far the valence band of the $CdGa_2Se_4$ have been estimated to be 106.5 meV and 418.9 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-},\;B_{1^-},\;and\;C_{11}-exciton$ peaks.

Preparation of Bismuth Telluride Thin Films using RF magnetron sputtering and Study on Their Thermoelectric Properties (RF 마그네트론 스퍼터링을 이용한 Bismuth Telluride 박막의 제조와 그 열전 특성 연구)

  • Kim, Dong-Ho;Lee, Gun-Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.215-221
    • /
    • 2005
  • Thermoelectric bismuth telluride thin films were prepared on $SiO_{2}$/Si substrate with co-sputtering of bismuth and tellurium targets. The effects of deposition temperature on surface morphology, crystallinity and electrical transport properties were investigated. Hexagonal crystallites were clearly visible at the surface of films deposited above $290 ^{\circ}C$. Change of dominant phase from rhombohedral $Bi_2Te_3$ to hexagonal BiTe was confirmed with X-ray diffraction analysis. The deviation from stoichiometric composition at high deposition temperature resulted in the change of structural and electrical characteristics. Seebeck coefficients of all samples have negative value, indicating the prepared $Bi_XTe_Y$ films are n-type thermoelectric. Optimum of Seebeck coefficient and power factor were obtained at the deposition temperature of $225 \^{circ}$C (about -55 $\mu$V/K and $3\times10^{-4}$ W/$k^{2}$m, respectively). Deterioration of thermoelectric properties at higher temperature.

Design and deposition of two-layer antireflection and antistatic coatings using a TiN thin film (TiN 박막을 이용한 2층 무반사 코팅의 설계 및 층착)

  • 황보창권
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.323-329
    • /
    • 2000
  • In this study we have calculated an ideal complex refractive index of a TiN trim used in a layer of anl1reilecnon (I\R) coatmg, [air$ISiO_2ITiNIglass$] in the visible. Also we simulated the rellectance of lwo-layer AR coating by varying the thicknesses of TiN and $SiO_2$ layers, respecl1vely. The simolation results show that we can controllhe lowest reflectance and AR band of tile AR coating. The TIN fihns were fabricated by a RF magnetron sputtering apparalus. The chemical, structural and electrical properties of TiN fih11S were inveshgated by the Rutherford backscattering spech'oscopy (RBS), atomic force microscope (AFM) and 4-point probe. The optical properlies were inve,tigated by the spectrophotometer and vanable angle spectroscopic ellipsometer (VASE). The smface roughness of TiN flhns \vas $9~10\AA$. TIle resistivity of TiN films was TEX>$360~730\mu$\Omega $ cm. The ,toichlOllletry of TiN film was 1'1: O:N = I: 0.65 :0.95 and ilic oxygen wa~ found on ilie smface. With these experimental and simu]al1on resulLs, we deposited duo: two-layer AR coating, [air$ISiO_2ITiNIglass$] and the refleClance was under 0.5% ill the regIOn of 440-650 run. 0 run.

  • PDF

UV-nanoimprint Patterning Without Residual Layers Using UV-blocking Metal Layer (UV 차단 금속막을 이용한 잔류층이 없는 UV 나노 임프린트 패턴 형성)

  • Moon Kanghun;Shin Subum;Park In-Sung;Lee Heon;Cha Han Sun;Ahn Jinho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.275-280
    • /
    • 2005
  • We propose a new approach to greatly simplify the fabrication of conventional nanoimprint lithography (NIL) by combined nanoimprint and photolithography (CNP). We introduce a hybrid mask mold (HMM) made from UV transparent material with a UV-blocking Cr metal layer placed on top of the mold protrusions. We used a negative tone photo resist (PR) with higher selectivity to substrate the CNP process instead of the UV curable monomer and thermal plastic polymer that has been commonly used in NIL. Self-assembled monolayer (SAM) on HMM plays a reliable role for pattern transfer when the HMM is separated from the transfer layer. Hydrophilic $SiO_2$ thin film was deposited on all parts of the HMM, which improved the formation of SAM. This $SiO_2$ film made a sub-10nm formation without any pattern damage. In the CNP technique with HMM, the 'residual layer' of the PR was chemically removed by the conventional developing process. Thus, it was possible to simplify the process by eliminating the dry etching process, which was essential in the conventional NIL method.

  • PDF