• Title/Summary/Keyword: SiOF Thin Film

Search Result 2,900, Processing Time 0.032 seconds

Liquid Crystal Alignment Effects Using a SiO Thin Film (SiO 박막을 이용한 액정배향 효과)

  • Kang, Hyung-Ku;Hwang, Jeong-Yeon;Park, Chang-Joon;Seo, Dae-Shik;Ahn, Han-Jin;Kim, Kyung-Chan;Kim, Jong-Bok;Baik, Hong-Koo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.198-201
    • /
    • 2004
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of a SiO thin film. The homogenous alignment can be obtain어 using ion beam (IB) exposure on the SIO thin film, when positive type NLC ($Delta\varepsilon$>0) was injected However, the homeotropic alignment can be obtained using ion beam (IB) exposure on the SiO thin film, when negative type NLC ($\Delta\varepsilon$>0) was injected The LC aligning ability on the SiO thin film depends on the dielectric anisotropy type of LC. It will be discussed.

  • PDF

A Study on the Low Temperature Growth of SiC Film with a 1,3-DSB Precursor (단일전구체(1,3-DSB)에 의한 저온 SiC박막 성장에 관한 연구)

  • 양재웅;노대호;윤진국;김재수
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.141-147
    • /
    • 2003
  • Silicon carbide thin film was deposited in APCVD and LPCVD system with 1,3-DSB precursor 1,3-DSB is the single precursor to deposit SiC on Si at low temperature. SiC film was deposited at $850^{\circ}C$ lower than ordinary temperature ($1000~1200^{\circ}C$) in CVD process. SiC thin film glowed to high oriented (111) plane in APCVD system. In LPCVD system, SiC film groved to preferred (220) plane at same temperature. This discrepancy between preferred planes can be described by the difference of deposition mechanism. Amorphous phase and crystal defect were observed in APCVD system with the main growth mechanism of mass transport limited region. But in LPCVD system, we got the SIC film of uniform, faceted structure and high quality.

용액공정을 이용한 SiOC/SiO2 박막제조

  • Kim, Yeong-Hui;Kim, Su-Ryong;Gwon, U-Taek;Lee, Jeong-Hyeon;Yu, Yong-Hyeon;Kim, Hyeong-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.36.2-36.2
    • /
    • 2009
  • Low dielectric materials have been great attention in the semiconductor industry to develop high performance interlayer dielectrics with low k for Cu interconnect technology. In our study, the dielectric properties of SiOC /SiO2 thin film derived from polyphenylcarbosilane were investigated as a potential interlayer dielectrics for Cu interconnect technology. Polyphenylcarbosilane was synthesized from thermal rearrangement of polymethylphenylsilane around $350^{\circ}C{\sim}430^{\circ}C$. Characterization of synthesized polyphenylcarbosilane was performed with 29Si, 13C, 1H NMR, FT-IR, TG, XRD, GPC and GC analysis. From FT-IR data, the band at 1035 cm-1 is very strong and assigned to CH2 bending vibration in Si-CH2-Si group, indicating the formation of the polyphenylcarbosilane. Number average of molecular weight (Mn) of the polyphenylcarbosilane synthesized at $400^{\circ}C$ for 6hwas 2, 500 and is easily soluble in organic solvent. SiOC/SiO2 thin film was fabricated on ton-type silicon wafer by spin coating using 30wt % polyphenylcarbosilane incyclohexane. Curing of the film was performed in the air up to $400^{\circ}C$ for 2h. The thickness of the film is ranged from $1{\mu}m$ to $1.7{\mu}m$. The dielectric constant was determined from the capacitance data obtained from metal/polyphenylcarbosilane/conductive Si MIM capacitors and show a dielectric constant as low as 2.5 without added porosity. The SiOC /SiO2 thin film derived from polyphenylcarbosilane shows promising application as an interlayer dielectrics for Cu interconnect technology.

  • PDF

A Study on the Sodium and Moisture Gettering in PSG/SiO2 Passivated Al-1%Si Thin Film Interconnections (PSG/SiO2 보호막 처리된 Al-1%Si 박막배선에서의 Sodium과 수분 게터링에 관한 연구)

  • Kim, Jin Young
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.3
    • /
    • pp.126-130
    • /
    • 2013
  • The sodium (Na) and moisture ($H_2O$) gettering phenomena were measured and analyzed in PSG/$SiO_2$ passivated Al-1%Si thin film interconnections. PSG/$SiO_2$ passivation and Al-1%Si thin films were deposited by using APCVD (atmosphere pressure chemical vapor deposition) and DC magnetron sputter techniques, respectively. SIMS (secondary ion mass spectrometry) depth profiling analysis was used to determine the distribution of sodium and moisture throughout the PSG/$SiO_2$ passivated Al-1%Si thin film interconnections. Both sodium and moisture peaks were observed strongly at the interfaces between layers rather than within the Al-1%Si thin film interconnections. Sodium peaks were observed at the interface between PSG and $SiO_2$ passivations, while moisture peaks were not observed.

Thermal and Mechanical Properties of a N2 Doped Porous 3C-SiC Thin Film (질소가 도핑된 다공질 3C-SiC 박막의 열적, 기계적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.651-654
    • /
    • 2010
  • This paper describes the thermal and mechanical properties of doped thin film 3C-SiC and porous 3C-SiC. In this work, the in-situ doped thin film 3C-SiC was deposited by using atmospheric pressure chemical vapor deposition (APCVD) method at $120^{\circ}C$ using single-precursor hexamethyildisilane: $Si_2(CH_3)_6$ (HMDS) as Si and C precursors. 0~40 sccm $N_2$ gas was used as doping source. After growing of doped thin film 3C-SiC, porous structure was achieved by anodization process with 380 nm UV-LED. Anodization time and current density were fixed at 60 sec and 7.1 mA/$cm^2$, respectively. The thermal and mechanical properties of the $N_2$ doped porous 3C-SiC was measured by temperature coefficient of resistance (TCR) and nano-indentation, respectively. In the case of 0 sccm, the variations of TCR of thin film and porous 3C-SiC are similar, but TCR conversely changed with increase of $N_2$ flow rate. Maximum young's modulus and hardness of porous 3C-SiC films were measured to be 276 GPa and 32 Gpa at 0 sccm $N_2$, respectively.

Direct-Aluminum-Heating-Induced Crystallization of Amorphous Silicon Thin Film (비정질 실리콘 박막의 알루미늄 직접 가열 유도 결정화 공정)

  • Park, Ji-Young;Lee, Dae-Geon;Moon, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1019-1023
    • /
    • 2012
  • In this research, a novel direct-aluminum-heating-induced crystallization method was developed for the purpose of application to solar cells. By applying a constant current of 3 A to an aluminum thin film, a 200-nm-thick amorphous silicon (a-Si) thin film with a size of $1cm{\times}1cm$ can be crystallized into a polycrystalline silicon (poly-Si) thin film within a few tens of seconds. The Raman spectrum analysis shows a peak of 520 $cm^{-1}$, which verifies the presence of poly-Si. After removing the aluminum layer, the poly-Si thin film was found to be porous. SIMS analysis showed that the porous poly-Si thin film was heavily p-doped with a doping concentration of $10^{21}cm^{-3}$. Thermal imaging shows that the crystallization from a-Si to poly-Si occurred at a temperature of around 820 K.

Plasmonic Enhanced Light Absorption by Silver Nanoparticles Formed on Both Front and Rear Surface of Polycrystalline Silicon Thin Film Solar Cells

  • Park, Jongsung;Park, Nochang;Varlamov, Sergey
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.493-493
    • /
    • 2014
  • The manufacturing cost of thin-film photovoltics can potentially be lowered by minimizing the amount of a semiconductor material used to fabricate devices. Thin-film solar cells are typically only a few micrometers thick, whereas crystalline silicon (c-Si) wafer solar cells are $180{\sim}300\mu}m$ thick. As such, thin-film layers do not fully absorb incident light and their energy conversion efficiency is lower compared with that of c-Si wafer solar cells. Therefore, effective light trapping is required to realize commercially viable thin-film cells, particularly for indirect-band-gap semiconductors such as c-Si. An emerging method for light trapping in thin film solar cells is the use of metallic nanostructures that support surface plasmons. Plasmon-enhanced light absorption is shown to increase the cell photocurrent in many types of solar cells, specifically, in c-Si thin-film solar cells and in poly-Si thin film solar cell. By proper engineering of these structures, light can be concentrated and coupled into a thin semiconductor layer to increase light absorption. In many cases, silver (Ag) nanoparticles (NP) are formed either on the front surface or on the rear surface on the cells. In case of poly-Si thin film solar cells, Ag NPs are formed on the rear surface of the cells due to longer wavelengths are not perfectly absorbed in the active layer on the first path. In our cells, shorter wavelengths typically 300~500 nm are also not effectively absorbed. For this reason, a new concept of plasmonic nanostructure which is NPs formed both the front - and the rear - surface is worth testing. In this simulation Al NPs were located onto glass because Al has much lower parasitic absorption than other metal NPs. In case of Ag NP, it features parasitic absorption in the optical frequency range. On the other hand, Al NP, which is non-resonant metal NP, is characterized with a higher density of conduction electrons, resulting in highly negative dielectric permittivity. It makes them more suitable for the forward scattering configuration. In addition to this, Ag NP is located on the rear surface of the cell. Ag NPs showed good performance enhancement when they are located on the rear surface of our cells. In this simulation, Al NPs are located on glass and Ag NP is located on the rear Si surface. The structure for the simulation is shown in figure 1. Figure 2 shows FDTD-simulated absorption graphs of the proposed and reference structures. In the simulation, the front of the cell has Al NPs with 70 nm radius and 12.5% coverage; and the rear of the cell has Ag NPs with 157 nm in radius and 41.5% coverage. Such a structure shows better light absorption in 300~550 nm than that of the reference cell without any NPs and the structure with Ag NP on rear only. Therefore, it can be expected that enhanced light absorption of the structure with Al NP on front at 300~550 nm can contribute to the photocurrent enhancement.

  • PDF

The Formation Technique of Thin Film Heaters for Heat Transfer Components (열교환 부품용 발열체 형성기술)

  • 조남인;김민철
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.31-35
    • /
    • 2003
  • We present a formation technique of thin film heater for heat transfer components. Thin film structures of Cr-Si have been prepared on top of alumina substrates by magnetron sputtering. More samples of Mo thin films were prepared on silicon oxide and silicon nitride substrates by electron beam evaporation technology. The electrical properties of the thin film structures were measured up to the temperature of $500^{\circ}C$. The thickness of the thin films was ranged to about 1 um, and a post annealing up to $900^{\circ}C$ was carried out to achieve more reliable film structures. In measurements of temperature coefficient of resistance (TCR), chrome-rich films show the metallic properties; whereas silicon-rich films do the semiconductor properties. Optimal composition between Cr and Si was obtained as 1 : 2, and there is 20% change or less of surface resistance from room temperature to $500^{\circ}C$. Scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) were used for the material analysis of the thin films.

  • PDF

A Study of the Crystallographic Characteristic of ZnO Thin Film Grown on ZnO Buffer Layer (ZnO Buffer Layer에 의한 ZnO 박막의 결정학적 특성에 관한 연구)

  • 금민종;손인환;이정석;신성권;김경환
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.214-217
    • /
    • 2003
  • In this study, we prepared ZnO thin film on $SiO_2$/Si substrate by FTS (Facing Targets Sputtering) apparatus which can reduce damage on the thin film because the bombardment of high-energy Particles such as ${\gamma}$-electron can be restrained. And, properties of thin filnl grown with ZnO buffer-layer which can be suppress initial growth layer was investigated. The crystalline and the c-axis preferred orientation of ZnO thin film was also investigated by XRD. As a result, we noticed that the ZnO thin film has a good crystallographic characteristic at thickness of ZnO buffer layer 10, 20 nm and working pressure 1 mTorr.

Ultraviolet Photodetection Properties of ZnO/Si Heterojunction Diodes Fabricated by ALD Technique Without Using a Buffer Layer

  • Hazra, Purnima;Singh, S.K.;Jit, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.117-123
    • /
    • 2014
  • The fabrication and characterization of a Si/ZnO thin film heterojunction ultraviolet photodiode has been presented in this paper. ZnO thin film of ~100 nm thick was deposited on <100> Silicon (Si) wafer by atomic layer deposition (ALD) technique. The Photoluminescence spectroscopy confirms that as-deposited ZnO thin film has excellent visible-blind UV response with almost no defects in the visible region. The room temperature current-voltage characteristics of the n-ZnO thin film/p-Si photodiodes are measured under an UV illumination of $650{\mu}W$ at 365 nm in the applied voltage range of ${\pm}2V$. The current-voltage characteristics demonstrate an excellent UV photoresponse of the device in its reverse bias operation with a contrast ratio of ~ 1115 and responsivity of ~0.075 A/W at 2 V reverse bias voltage.