• Title/Summary/Keyword: SiC-Si composite

Search Result 802, Processing Time 0.035 seconds

Effect of Pressurless Annealing Temperature on the Properties of $\alpha$-SiC-WC Electroconductive Ceramic Composites. ($\alpha$-SiC-WC 전도성 세라믹 복합체의 특성에 미치는 무가압 Annealing 온도)

  • 신용덕;오상수;주진영
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.241-247
    • /
    • 2004
  • The composites were fabricated 61 vol.%$\alpha$-$\alpha$-SiC and 39vol.% WC powders with the liquid forming additives of 12wt% $Al_2$O$_3$+Y$_2$O$_3$ by pressureless annealing at 1700, 1800, 190$0^{\circ}C$ for 4 hours. The result of phase analysis of composites by XRD revealed $\alpha$-SiC(2H), WC, and YAG(Al$_{5}$ Y$_3$O$_{12}$ ) crystal phase. The relative density, the flexural strength, fracture toughness and Young's modulus showed respectively the highest value of 99.4%, 375.76㎫, 5.79㎫ㆍm$\frac{1}{2}$, and 106.43㎬ for composite by pressureless annealing temperature 190$0^{\circ}C$ at room temperature. The electrical resistivity showed the lowest value of 1.47${\times}$10$^{-3}$ $\Omega$$.$cm for composite by pressureless annealing temperature 190$0^{\circ}C$ at $25^{\circ}C$. The electrical resistivity of the $\alpha$-SiC-WC composites was all positive temperature cofficient resistance (PTCR) in the temperature ranges from $25^{\circ}C$ to 50$0^{\circ}C$.

Excluding molten fluoride salt from nuclear graphite by SiC/glassy carbon composite coating

  • He, Zhao;Song, Jinliang;Lian, Pengfei;Zhang, Dongqing;Liu, Zhanjun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1390-1397
    • /
    • 2019
  • SiC coating and SiC/glassy carbon composite coating were prepared on IG-110 nuclear graphite (Toyo Tanso Co., Ltd., Japan) to strengthen its inertness to molten fluoride salt used in molten salt reactor (MSR). Two kinds of modified graphite were obtained and correspondingly named as IG-110-1 and IG-110-2, which referred to modified IG-110 with a single SiC coating and a SiC/glassy carbon composite coating, respectively. Both structure and property of modified graphite were carefully researched and contrasted with virgin IG-110. Results indicated that modified graphite presented better comprehensive properties such as more compact structure and higher resistance to molten salt infiltration. With the protection of coatings, the infiltration amounts of fluoride salt into modified graphite were much less than that into virgin IG-110 at the same circumstance. Especially, the infiltration amount of fluoride salt into IG-110-2 under 5 atm was merely 0.26 wt%, which was much less than that into virgin IG-110 under 1.5 atm (13.5 wt%) and the critical index proposed for nuclear graphite used in MSR (0.5 wt%). The SiC/glassy carbon composite coating gave rise to highest resistance to molten salt infiltration into IG-110-2, and thus demonstrated it could be a promising protective coating for nuclear graphite used in MSR.

Synthesis of \$alpha-Al_2O_3/SiO_2$ Composite Powders for Reaction-Sintered Mullite and its Properties (반응소결 물라이트를 위한 \$alpha-Al_2O_3/SiO_2$ 복합분말의 합성 및 그 특성)

  • Kim, Hye-Soo;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.8
    • /
    • pp.909-914
    • /
    • 1995
  • From alumina powder and TEOS, $\alpha$-Al2O3/SiO2 composite powder for reaction-sintered mullite was synthesized by heterogeneous coagulation and surface coating, and investigated the mullitization reaction and sintering behavor of these powders. In $\alpha$-Al2O3/SiO2 composite powder prepared by heterogeneous coagulation, each alumina particles were surrounded by silica particles of 50~60 nm in size. And the alumina particles in composite powder prepared by surface coating were coated by uniform silica layer with thickness of 50 nm. In both methods, mullitization reaction was completed at 1$650^{\circ}C$ for 3h, and specimen sintered above 145$0^{\circ}C$ was about 95% fo the theoretical relative density. Mullite grains formed from the reaction with composite powders showed spherical shape with a size of 1~2${\mu}{\textrm}{m}$.

  • PDF

Effect of Si on the Microstructure and Mechanical Properties of Ti-Al-Si-C-N Coatings (Si 함량에 따른 Ti-Al-Si-C-N 코팅막의 미세구조와 기계적 특성의 변화에 관한 연구)

  • Hong, Young-Su;Kwon, Se-Hun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.2
    • /
    • pp.73-78
    • /
    • 2009
  • Quinary Ti-Al-Si-C-N films were successfully synthesized on SUS 304 substrates and Si wafers by a hybrid coating system combining an arc ion plating technique and a DC reactive magnetron sputtering technique. In this work, the effect of Si content on the microstructure and mechanical properties of Ti-Al-C-N films were systematically investigated. It was revealed that the microstructure of Ti-Al-Si-C-N coatings changed from a columnar to a nano-composite by the Si addition. Due to the nanocomposite microstructure of Ti-Al-Si-C-N coatings, the microhardness of The Ti-Al-Si-C-N coatings significantly increased up to 56 GPa. In addition the average friction coefficients of Ti-Al-Si-C-N coatings were remarkably decreased with Si addition. Therefore, Ti-Al-Si-C-N coatings can be applicable as next-generation hard-coating materials due to their improved hybrid mechanical properties.

On the Study Of AlSiCa($Al_2O_3-SiC-C$) refractories: (I) Synthesis of raw material using domestic chnmotte (AlSiCa($Al_2O_3-SiC-C$)계 내화물 재료에 관한 연구: (I) 국산 chamotte로부터 원료분말합성)

  • Shim, Kwang-Bo;Joo, Kyoung;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.626-631
    • /
    • 1997
  • AlSiCa powders were prepared from the domestic Hadong Kaolin ($Al_2O_3{\cdot}2SiO_2{\cdot}2H_2O$). As a result of the reaction of Hadong Kaolin and carbon powder at reducing atmosphere, $Al_2O_3{\cdot}SiC$ composite started to form at $1300^{\circ}C$ and completed at $1400^{\circ}C$. The optimum amount of carbon was 1:4 in mole ratio. It was found that only bright-green $\beta-SiC$ phase forms when the mixture was packed without carbon powder in alumina crucible.

  • PDF

Microstructure Characterization on Nano-thick Nickel Cobalt Composite Silicide on Polycrystalline Substrates (다결정 실리콘 기판 위에 형성된 나노급 니켈 코발트 복합실리사이드의 미세구조 분석)

  • Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.195-200
    • /
    • 2007
  • We fabricated thermally-evaporated 10 nm-Ni/70 w-Poly-Si/200 $nm-SiO_2/Si$ and $10nm-Ni_{0.5}Co_{0.5}/70$ nm-Poly-Si/200 $nm-SiO_2/Si$ structures to investigate the microstructure of nickel monosilicide at the elevated temperatures required fur annealing. Silicides underwent rapid anneal at the temperatures of $600{\sim}1100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process formed on top of the polycrystalline silicon substrate mimicking the gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope and an Auger depth profile scope were employed for the determination of cross sectional microstructure and thickness. 20nm thick nickel cobalt composite silicides on polycrystalline silicon showed low resistance up to $900^{\circ}C$, while the conventional nickle silicide showed low resistance below $900^{\circ}C$. Through TEM analysis, we confirmed that the 70nm-thick nickel cobalt composite silicide showed a unique silicon-silicide mixing at the high silicidation temperature of $1000^{\circ}C$. We identified $Ni_3Si_2,\;CoSi_2$ phase at $700^{\circ}C$ using an X-ray diffractometer. Auger depth profile analysis also supports the presence of this mixed microstructure. Our result implies that our newly proposed NiCo composite silicide from NiCo alloy films process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

  • PDF

Effect of Ultrasound on the Mechanical Properties of Electrodeposited Ni-SiC Nano Composite

  • Gyawali, Gobinda;Lee, Su-Wan;U, Dong-Jin;Lee, Han-Yong;Jo, Seong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.26.1-26.1
    • /
    • 2010
  • Ni-SiC nano composite coatings were fabricated using electrodeposition technique with the aid of ultrasound. The properties of the nano composite were investigated by using SEM, XRD, Wear test and Vicker's microhardness test. The results demonstrated that the microhardness of composite coatings under ultrasonic condition was improved significantly as compared to conventional electrodeposition techniques without ultrasound. The nano particles were found to be distributed homogeneously with reduced agglomeration. The synergistic combination of superior wear resistance and improved microhardness was found in ultrasonicated conditions to the Ni-SiC nano composite coatings.

  • PDF