• Title/Summary/Keyword: SiC-C films

Search Result 2,101, Processing Time 0.031 seconds

Fracture toughness of amorphus SiC thin films using nanoindentation and simulation

  • Mamun, M.A.;Elmustafa, A.A.
    • Advances in materials Research
    • /
    • v.9 no.1
    • /
    • pp.49-62
    • /
    • 2020
  • Fracture toughness of SiC on Si thin films of thicknesses of 150, 750, and 1500 nm were measured using Agilent XP nanoindenter equipped with a Dynamic Control Module (DCM) in Load Control (LC) and Continuous Stiffness Method (CSM) protocols. The fracture toughness of the Si substrate is also measured. Nanovision images implied that indentations into the films and well deep into the Si caused cracks to initiate at the Si substrate and propagate upward to the films. The composite fracture toughness of the SiC/Si was measured and the fracture toughness of the SiC films was determined based on models that estimate film properties from substrate properties. The composite hardness and modulus of the SiC films were measured as well. For the DCM, the hardness decreases from an average of 35 GPa to an average of 13 GPa as the film thick increases from 150 nm to 1500 nm. The hardness and moduli of the films depict the hardness and modulus of Si at deep indents of 12 and 200 GPa respectively, which correlate well with literature hardness and modulus values of Si. The fracture toughness values of the films were reported as 3.2 MPa√m.

Effect of Chemical Vapor Deposition Condition on the Growth of SiC Thin Films (화학기상증착조건이 SiC 박막의 성장에 미치는 영향)

  • Bang, Wook;Kim, Hyeong-Joon
    • Korean Journal of Crystallography
    • /
    • v.3 no.2
    • /
    • pp.98-110
    • /
    • 1992
  • B-SiC thin films were fabricated on Si(100) substrate under 1 atom by fVD. The effects of deposition conditions on the growth and the properties especially crystallinity and prefer ential alignment of these thin films were investigated. SiH4 and CH4 were used as source gases and H2 as Carrier gas. Th9 growth Of B-SiC thin films with changing parameters such as the growth temperature, the ratio of source gases (SiH4/CH4 ) and the total amount of source gases. The grown thin films were characterized by using SEM, a -step, XRD, Raman Spectro- scopy and TEM. Chemical conversion process improved the quality of thin films due to the formation of SiC buffer layer. The crystallinity of SiC thin films was improved when the growth temperature was higher than l150t and the amount of CH4 exceeded that of SiH4. The better crystallinity, the better alignment to the crystalline direction of substates. TEM analyses of the good quality thin films showed that the grain size was bigger at the surface than at the interface and the defect density is not depend on the ratio of the source gases.

  • PDF

Characteristics of polycrystalline 3C-SiC thin films grown on AlN buffer layer for M/NEMS applications (AlN 버퍼층위에 성장된 M/NEMS용 다결정 3C-SiC 박막의 특성)

  • Chung, Gwiy-Sang;Kim, Kang-San;Lee, Jong-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.457-461
    • /
    • 2007
  • This paper describes the characteristics of poly (polycrystalline) 3C-SiC grown on $SiO_{2}$ and AlN substrates, respectively. The crystallinity and the bonding structure of poly 3C-SiC grown on each substrate were investigated according to various growth temperatures. The crystalline quality of poly 3C-SiC was improved from resulting in decrease of FWHM (full width half maximum) of XRD and FT-IR by increasing the growth temperature. The minimum growth temperature of poly 3C-SiC was $1100^{\circ}C$. The surface chemical composition and the electron mobility of poly 3C-SiC grown on each substrate were investigated by XPS and Hall Effect, respectively. The chemical compositions of surface of poly 3C-SiC films grown on $SiO_{2}$ and AlN were not different. However, their electron mobilities were $7.65{\;}cm^{2}/V.s$ and $14.8{\;}cm^{2}/V.s$, respectively. Therefore, since the electron mobility of poly 3C-SiC films grown on AlN buffer layer was two times higher than that of 3C-SiC/$SiO_{2}$, a AlN film is a suitable material, as buffer layer, for the growth of poly 3C-SiC thin films with excellent properties for M/NEMS applications.

Surface structure and critical load of thin metal films on SiC substrate (SiC 기판상의 금속박막의 표면구조 및 임계하중)

  • 임창성
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.358-369
    • /
    • 1995
  • Surface structure and adhesion by the reaction between thin metal films and SiC were studied at temperatures between 550 and $1450^{\circ}C$ for various times. The reaction with the formation of various silicides was initially observed above $850^{\circ}C$ for SiC/Co system and $650^{\circ}C$ for SiC/Ni system. The cobalt reacted with SiC and consumed completely at $1050^{\circ}C$ for 0.5 h and the nickel at $950^{\circ}C$ for 2 h. The observed CoSi phase in SiC/Co and Ni$_2$Si phase in SiC/Ni are thermodynamically stable in the reaction zone up to 125$0^{\circ}C$ and $1050^{\circ}C$ respectively. Carbon was crystallized as graphite above $1450^{\circ}C$ for SiC/Co reaction surface and $1250^{\circ}C$ for SiC/Ni. The critical loads of the thin metal films on SiC substrate were qualitatively compared in terms of the scratch test method. At temperatures between 850 and $1050^{\circ}C$, relatively higher values of 20~33 N were observed for SiC/Ni couples.

  • PDF

Electrical and optical characteristics of porous 3C-SiC thin films with dopants (도핑량에 따른 다공성 3C-SiC 박막의 전기 및 광학적 특성)

  • Kim, Kan-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.27-27
    • /
    • 2010
  • This paper describes the electrical and optical characteristics of $N_2$ doped porous 3C-SiC films. Average pore diameter is about 30 nm and etched area was increased with $N_2$ doping rate. The mobility was dramatically decreased in porous 3C-SiC. The band gaps of polycrystalline 3C-SiC films and doped porous 3C-SiC were 2.5 eV and 2.7 eV, respectively.

  • PDF

Physical Characteristics of 3C-SiC Thin-films Grown on Si(100) Wafer (Si(100) 기판 위에 성장돈 3C-SiC 박막의 물리적 특성)

  • ;;Shigehiro Nishino
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.953-957
    • /
    • 2002
  • Single crystal 3C-SiC (cubic silicon carbide) thin-films were deposited on Si(100) wafer up to the thickness of 4.3 ${\mu}{\textrm}{m}$ by APCVD (atmospheric pressure chemical vapor deposition) method using HMDS (hexamethyildisilane; {CH$_{3}$$_{6}$ Si$_{2}$) at 135$0^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC film was 4.3 ${\mu}{\textrm}{m}$/hr. The 3C-SiC epitaxial film grown on Si(100) wafer was characterized by XRD (X-ray diffraction), AFM (atomic force microscopy), RHEED (reflection high energy electron diffraction), XPS (X-ray photoelecron spectroscopy), and Raman scattering, respectively. Two distinct phonon modes of TO (transverse optical) near 796 $cm^{-1}$ / and LO (longitudinal optical) near 974$\pm$1 $cm^{-1}$ / of 3C-SiC were observed by Raman scattering measurement. The heteroepitaxially grown film was identified as the single crystal 3C-SiC phase by XRD spectra (2$\theta$=41.5。).).

Mechanical Properties of in-situ Doped Polycrystalline 3C-SiC Thin Films by APCVD (APCVD로 in-situ 도핑된 다결정 3C-SiC 박막의 기계적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.235-238
    • /
    • 2009
  • This paper describes the mechanical properties of poly (Polycrystalline) 3C-SiC thin films with $N_2$ in-situ doping. In this work, the poly 3C-SiC film was deposited by APCVD (Atmospheric Pressure Chemical Vapor Deposition) method using single-precursor HMDS (Hexamethyildisilane: $Si_2(CH_3)_6)$ at $1200^{\circ}C$. The mechanical properties of doped poly 3C-SiC thin films were measured by nono-indentation according to the various $N_2$ flow rate. In the case of 0 sccm $N_2$ flow rate, Young's Modulus and hardness were obtained as 285 GPa and 35 GPa, respectively. Young's Modulus and hardness were decreased according to increase of $N_2$ flow rate. The crystallinity and surface roughness was also measured by XRD (X-Ray Diffraction) and AFM (Atomic Force Microscopy), respectively.

Crystal growth of uniform 3C-SiC thin films by CVD (CVD에 의한 균일한 다결정 3C-SiC 박막 결정 성장)

  • Yoon, Kyu-Hyung;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.234-235
    • /
    • 2008
  • The surface flatness of heteroepitaxially grown 3C-SiC thin films is a key factor affecting electronic and mechanical device applications. This paper describes the surface flatness of poly(polycrystalline) 3C-SiC thin films according to Ar flow rates and the geometric structures of reaction tube, respectively. The poly 3C-SiC thin film was deposited by APCVD (Atmospheric pressure chemical vapor deposition) at $1200^{\circ}C$ using HMDS (Hexamethyildisilane : $Si_2(CH_3)_6)$ as single precursor, and 1~10 slm Ar as the main flow gas. According to the increase of main carrier gas, surface fringes and flatness are improved. It shows the distribution of thickness is formed uniformly.

  • PDF

Characterization of 3C-SiC grown on Si(100) water (Si(100) 기판상에 성장된 3C-SiC의 특성)

  • Na, Kyung-Il;Chung, Yun-Sik;Ryu, Ji-Goo;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.533-536
    • /
    • 2001
  • Single crystal cubic silicon carbide(3C-SiC) thin film were deposited on Si(100) substrate up to a thickness of $4.3{\mu}m$ by APCVD(atmospheric pressure chemical vapor deposition) method using hexamethyildisilane(HMDS) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like. The growth rate of the 3C-SiC films was $4.3{\mu}m/hr$. The 3C-SiC epitaxical layers on Si(100) were characterized by XRD(X-ray diffraction), raman scattering and RHEED(reflection high-energy electron diffraction), respectively. The 3C-SiC distinct phonons of TO(transverse optical) near $796cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The deposition films were identified as the single crystal 3C-SiC phase by XRD spectra($2{\theta}=41.5^{\circ}$). Also, with increase of films thickness, RHEED patterns gradually changed from a spot pattern to a streak pattern.

  • PDF

Characterization of 3C-SiC grown on Si(100) wafer (Si(100) 기판상에 성장된 3C-SiC의 특성)

  • 나경일;정연식;류지구;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.533-536
    • /
    • 2001
  • Single crystal cubic silicon carbide(3C-SiC) thin film were deposited on Si(100) substrate up to a thickness of 4.3 $\mu\textrm{m}$ by APCVD(atmospheric pressure chemical vapor deposition) method using hexamethyildisilane(HMDS) at 1350$^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like. The growth rate of the 3C-SiC films was 4.3 $\mu\textrm{m}$/hr. The 3C-SiC epitaxical layers on Si(100) were characterized by XRD(X-ray diffraction), raman scattering and RHEED(reflection high-energy electron diffraction), respectively The 3C-SiC distinct phonons of TO(transverse optical) near 796 cm$\^$-1/ and LO(longitudinal optical) near 974${\pm}$1 cm$\^$-1/ were recorded by raman scattering measurement. The deposition films were identified as the single crystal 3C-SiC phase by XRD spectra(2$\theta$=41.5$^{\circ}$). Also, with increase of films thickness, RHEED patterns gradually changed from a spot pattern to a streak pattern

  • PDF