• Title/Summary/Keyword: SiC-AlN ceramics

Search Result 72, Processing Time 0.02 seconds

Manufacture and Characterization of Low Firing Temperatur Substrate using Glass Ceramics with Fluorine (Fluorine 함유 Glass Ceramics를 이용한 저온 소결기판 제조 및 기판의 특성 평가)

  • 강원호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.3 no.2
    • /
    • pp.27-38
    • /
    • 1996
  • Lithium fluorhectorite 결정상을 함유한 glass ceramics 분말의 형성과 제조된 glass ceramics 분말을 이용한 저온 소결기판의 특성평가를 하였다. Li2O-MgO-MgF2-SiO2 계 유 리로 핵형성 및 결정 성장을 실시하여 lithium fluorhectorite 결정상을 지닌 glass ceramics 를 제조하였다. 유리시편의 핵형성 온도는 46$0^{\circ}C$였고 결정성장온도는 600, 640, 110$0^{\circ}C$에서 나타났다. $600^{\circ}C$에서의 결정상으 Li2.4LiSi4O10F2가 나타났다. Li2.4Mg8LiSi4와 Li2.8Mg0.6SiO4은 lithium fluorhectorite 결정상으로 되기 위한 중간상임을 확인할수 있었다. 64$0^{\circ}C$에서 열처리 후 110$0^{\circ}C$에서 재열처리하여 형성된 결정은 lithium fluorhectorite 와 tridymite가 최종 결정 상으로 나타났다. 이것은 수중에서 water swelling 현상에 의하여 분말화할 수 있었다, 기판 제조용 slurry를 제조하기 위해 glass ceramics 분말에 Al2O3분말을 0,25,50wt%로 혼합한것 과 glass ceramics 분말에 potashborosilica-te glass 분말을 15, 30, 45, 60 wt% 로 배합하 여 doctor blade 법으로 green sheet를 제조하였다. green sheet 는 950~150$0^{\circ}C$로소성하여 기판의 특성을 평가하였다. 겉보기 기공율은 3.06~19,14%이었고, 전기적 특성으로 유전상수 는 3~5(100KHz)를 나타내었다.

Effect of Phase Stability on the Microstructure Development of α-SiAlON Ceramics

  • Kim, Joosun;Lee, Hae-Weon;Chen, I-Wei
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.118-122
    • /
    • 2003
  • Alpha-SiAlON ceramics having various compositions and modifying cations were investigated with respect to their phase stability, transformation kinetics. and resulting microstructures. Each composition was heat treated at 150$0^{\circ}C$ for 1h and measured the $\alpha$-SiAlON transformation. The phase-boundary composition in the single-phase $\alpha$-SiAlON region showed sluggish transformation from $\alpha$-$Si_3N_4$ to $\alpha$-SiAlON compared to the phase-center composition in the diagram. Using the different rare earth modifying cations, dependence of transformation kinetics on the phase stability in a fixed composition was also explained. By changing size of the stable u-phase region with exchanging cations, systematic change in transformation was observed. Transformation rate of $\alpha$-SiAlON at low temperature has an important role on controlling the final microstructure. Less transformation gives more chances to develop elongated grain in the microstructure.

Environmental Influences on Gas pressure Sintering of $Si_3N_4$ (질화규소의 가스압 소결에 미치는 환경 영향)

  • 김인섭;이경희;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.309-315
    • /
    • 1993
  • Gas pressure sintering is a promising process in various densification methods of high strength Si3N4 ceramics. Environmental influences on gas pressure sintering of Si3N4 was investigated with the variationof packing powder, specimen container and N2 gas pressure. The specimens had higher density, larger weight loss and inhomogeneous color in graphite specimen container than in SN26 crucible. The variations of sintering densities in various packing powders (Si3N4, SN26, AlN, BN) were very small but SiC powder was synthesised in graphite crucible with Si3N4 packing powder, aluminium oxynitride compounds were synthesised in SN26 crucible with AlN packing power. Also N2 gas pressure over 20kg/$\textrm{cm}^2$ reduced the densification of Si3N4 in one step-gas pressure sintering. As the result of two step-gas pressure sintering at 700kg/$\textrm{cm}^2$ for 15min., relative density of 99.9% and 3-point bending strength of 1090MPa and dense microstructure of 3~4${\mu}{\textrm}{m}$ grain size were obtained.

  • PDF

Covalently-Bonded Solid Solution Formed by Combustion Synthesis

  • Ohyanagi, Manshi;Munir, Zuhair A.
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.250-257
    • /
    • 2000
  • The feasibility of synthesizing SiC-AlN solid solution by field-activated combustion synthesis was demonstrated. At lower fields of 8-16.5V/cm, composites of AlN-rich and SiC-rich phases were synthesized, but at fields of 25-30 V/cm, the product was a 2H structure solid solution. Combustion synthesis of the solid solution by nitridation of aluminum with silicon carbide under a nitrogen gas pressure of 4-8 MPa was also investigated. The maximum combustion temperature and wave propagation velocity were found to be influenced by the electric field in the field-activated combustion synthesis, and by the green density and nitrogen pressure in the combustion nitridation. In both cases the formation of solid solutions is complete within seconds, considerably faster than in conventional methods which require hours.

  • PDF

Mechanical and Tribological Properties of $\alpha$-Sialon/SiC Whisker Composites ($\alpha$-Sialon/SiC Whisker 복합재료의 기계적 물성 및 마모 특성 연구)

  • 이병하;김인섭;이경희
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.10
    • /
    • pp.785-790
    • /
    • 1993
  • Sialon ceramics are presently seen as promising materials with high hardness, strength, fracture toughness and corrosion resistance for friction and wear applications. The objective of present work is to improve of mechanical properties and wear resistance of $\alpha$-Sialon(x=0.4) by addition of SiC whisker. $\alpha$-sialon(x=0.4)/SiC whisker composites were obtained by hot-isostatic pressing at 173$0^{\circ}C$ for 1 hour under 1757Kg/$\textrm{cm}^2$ N2 pressure after pressureless sintering the mixture of Si3N4, Y2O3, AlN at 1780~180$0^{\circ}C$ for 3~5 hours in N2 atmosphere. As the amount of SiC whisker content increased, relative density and hardness were decreased, however fracture toughness, bending strength and tribological properties were improved. Tribological properties of $\alpha$-Sialon/15 vol% SiC whisker composite were improved in spite of its low mechanical properties.

  • PDF

Effect of MgO-CaO-Al2O3-SiO2 Glass Additive Content on Properties of Aluminum Nitride Ceramics (MgO-CaO-Al2O3-SiO2 glass 첨가제 함량이 AlN의 물성에 미치는 영향)

  • Kim, Kyung Min;Baik, Su-Hyun;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.494-500
    • /
    • 2018
  • In this study, the effect of the content of $MgO-CaO-Al_2O_3-SiO_2$ (MCAS) glass additives on the properties of AlN ceramics is investigated. Dilatometric analysis and isothermal sintering for AlN compacts with MCAS contents varying between 5 and 20 wt% are carried out at temperatures ranging up to $1600^{\circ}C$. The results showed that the shrinkage of the AlN specimens increases with increasing MCAS content, and that full densification can be obtained irrespective of the MCAS content. Moreover, properties of the AlN-MCAS specimens such as microhardness, thermal conductivity, dielectric constant, and dielectric loss are analyzed. Microhardness and thermal conductivity decrease with increasing MCAS content. An acceptable candidate for AlN application is obtained: an AlN-MCAS composite with a thermal conductivity over $70W/m{\cdot}K$ and a dielectric loss tangent (tan ${\delta}$) below $0.6{\times}10^{-3}$, with up to 10 wt% MCAS content.

Measurement of Elastic Modulus of Structural Ceramics by Acoustic Resonance Method (공진법을 이용한 구조용 세라믹의 탄성계수 측정)

  • An, Bong-Yeong;Kim, Yeong-Gil;Lee, Seung-Seok
    • Korean Journal of Materials Research
    • /
    • v.5 no.3
    • /
    • pp.268-274
    • /
    • 1995
  • 세라믹재료의 동탄성계수 측정을 위한 공진주파수 측정장치를 구성하였다. 구조용 세라믹 재료로 이용되는 $Al_{2}$O_{3}$, SiC, $Si_{3}$N_{4}$의 온도를 120$0^{\circ}C$까지 5$0^{\circ}C$의 온도간격으로 올리면서 torsional resonant frequency와 flexural resonant frequency를 측정하고, 측정된 공진주파수로부터 각 재료의 탄성계수를 구하였다. SiC의 경우는 120$0^{\circ}C$의 온도까지 탄성계수가 선형적으로 감소하였으나, $Al_{2}$O_{3}$와 $Si_{3}$N_{4}$의 경우에는 각각 100$0^{\circ}C$와 80$0^{\circ}C$까지는 선형적으로 감소하나, 그 이상의 온도에서는 탄성게수의 감소폭이 증가하는 현상을 보였다. 이러한 현상은 다결정재료에서의 grain boundary sliding에 의한 것으로 알려져 있다. 상온에서 공진법으로 측정된 동탄성계수의 측정결과는 초음파법으로 측정한 결과와 비교하였는데, 4% 내에서 서로 일치하는 결과를 보였다.

  • PDF

The Effect of Pretreatment of Raw Powders on the Photoluminescence of Ca-α-SiAlON:Eu2+ Phosphor

  • Park, Young-Jo;Kim, Jin-Myung;Lee, Jae-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.413-417
    • /
    • 2014
  • The effect of calcination treatment of raw powders prior to high temperature synthesis of Ca-${\alpha}$-SiAlON:$Eu^{2+}$ phosphor was investigated. Based on data acquired from thermogravimetric analysis, calcination temperatures were set at 600, 750, and $900^{\circ}C$. Compared to the photoluminescence (PL) intensity of direct synthesis without calcination, a similar intensity was found for the $600^{\circ}C$ treatment, a 19% increased PL intensity was found for the $750^{\circ}C$ treatment, and a 23% decreased PL intensity was found for the $900^{\circ}C$ treatment. Observation of the particle morphology of the synthesized phosphors revealed that the material transport promoted through the agglomerates formed by the $750^{\circ}C$ treatment led to enhanced PL intensity. On the other hand, the oxidation of the starting AlN particles during the $900^{\circ}C$ treatment resulted in decreased photoluminescence.

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1996.11a
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

Microstructure and Mechanical Properties of Self-Reinforced Si3N4 Ceramic Prepared by Pressureless-Sintering (상압소결에 의해 제조한 자체 강인화 질화규소 세리믹의 미세조직과 기계적 성질)

  • 김완중;이영규;조원승;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.547-554
    • /
    • 1999
  • The self-reinforced Si3N4 ceramics were prepared by pressureless-sintering using ${\beta}$-Si3N4 whiskers as a seed. Effects of ${\beta}$-Si3N4 whiskers on microstructure and mechanical properties and the ${\alpha}$ to ${\beta}$ phase transition of Si3N4 were investigated. The self-reinforced Si3N4 ceramics were densified(relative density$\geq$98%) by pressureless-sintering (1800$^{\circ}C$ 2h) using 8mol% Y2O3 and 6mol% Al2O3 as sintering aids and 5 vol% ${\beta}$-Si3N4 whiskers within self-reinforced Si3N4 ceramic seemed to hinder the densification owing to their acicular shapes but accelerated the ${\alpha}$ to ${\beta}$ phase transition because they acted as pre-existing nuclei. It was found that the more ${\beta}$-Si3N4 nucei the faster ${\alpha}$ to ${\beta}$ phase transition.

  • PDF