• Title/Summary/Keyword: SiC particle

Search Result 519, Processing Time 0.024 seconds

Characteristics of nanocrystalline ZnO films grown on polyctystalline AlN for wireless chemical sensors (무선 화학센서용으로 다결정 AlN 위에 성장된 나노결정질 ZnO 막의 특성)

  • Song, Le Thi;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.252-252
    • /
    • 2009
  • In this work, the nanocrystalline ZnO/polycrystalline (poly) aluminum nitride (AlN)/Si structure was fabricated for humidity sensor applications based on surface acoustic wave (SAW). In this structure, the ZnO film was used as sensing material layer. These ZnO and AlN(0002) were deposited by so-gel process and a pulse reactive magnetron sputtering, respectively. These experimental results showed that the obtained SAW velocity on AlN film was about 5128 m/s at $h/\lambda$=0.0125 (h and $\lambda$ is thickness and wavelength, respectively). For ZnO sensing layers coated on AlN, films have hexagonal wurtzite structure and nanometer particle size. The crystalline size of ZnO films annealed at 400, 500, and 600 $^{\circ}C$ is 10.2, 29.1, and 38 nm, respectively. Surface of the film exhibits spongy which can adsorb steam in the air. The best quality of the ZnO film was obtained with annealing temperature at 500 $^{\circ}Cis$. The change in frequency response (127.9~127.85 MHz) of the SAW humidity sensor based on ZnO/AlN structure was measured along the change in humidity (41~69%). The structural properties of thin films wereinvestigated by XRD and SEM.

  • PDF

Study of Water Diffusion in PE-SiO2 Nanocomposites by Dielectric Spectroscopy

  • Couderc, Hugues;David, Eric;Frechette, Michel
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.291-296
    • /
    • 2014
  • In recent years, researchers have extensively investigated polymers filled with inorganic nanoparticles because these materials present improved physical properties relative to those of conventional unfilled polymers. Oxides, silica in particular, are the most commonly used inorganic particles because they possess good properties and can be fabricated at a low cost. However, oxides are hydrophilic in nature, and this leads to the presence of water at the interface between the nanoparticles and the polymer matrix. Due to the predominance of particle-matrix interfaces in nanocomposites, the presence of water at the interlayer region can be problematic. Moreover, the hydrophobic nature of most polymers, particularly for polyolefins such as polyethylene, may make it difficult to remove this interfacial water. In this paper, as-received and moistened samples of agglomerated nanosilica/polyethylene were dried using an isothermal treatment at $60^{\circ}C$, and the efficacy of this treatment was studied using dielectric spectroscopy. The Maxwell-Wagner-Sillars relaxation peaks were observed to shift to lower frequencies by three decades, and this was linked to a modification of the water content, due to drying, at the interfaces between silica and polyethylene and at the interfaces within the nanosilica agglomerates. The evolution of the extracted retardation time is explained by the nanosilica hydrophily and the free volume introduced by the nanoparticles.

Secondary Air Injection Effect on Cold Flow in a Laboratory-scale Circulating Fluidized Bed Combustor (실험실 규모 순환유동층 연소로에서 2차공기 주입이 냉간유동에 미치는 영향)

  • Jang, S.D.;La, S.H.;Hwang, J.H.;Kang, K.T.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.217-228
    • /
    • 2000
  • Circulating Fluidized Bed Combustor(CFBC) has been used for the incineration of waste sewage sludge and for the power generation. In this study hydrodynamic characteristics of two phase flow have been studied in a riser section of CFBC. A lab-scale riser is designed and SiC (Geldart type B) is used for solid particles. Experiments are performed by controlling the fluidization parameters including superficial velocity and secondary air to primary air ratio for determination of solid holdup profiles in the riser. Superficial velocities of each fluidization regime are well agreed with results predicted by a theoretical model. The results show that the axial solid holdup distributions calculated by measuring differential static pressures in the riser are found to show a basic profile described by a simple exponential function. Our flow regime during experiments mainly belongs to fast fluidization regime for particle size of 300${\mu}m$. As the SA/PA ratio increases, solid holdup in the lower dense region of the riser increases.

  • PDF

Analysis of Process Parameter dependency on the characteristics of high density fluoro carbon plasma using global model (글로벌 모델에 의한 저온 고밀도 플루오로카본 플라즈마 특성의 공정변수 의존성 해석)

  • Lee, Ho-Jun;Tae, Heung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.879-881
    • /
    • 1999
  • Radical and ion densities in a CF4 plasma have been calculated as a function of input power density. 9as pressure and feed gas flow rate using simple 0 dimensional global model. Fluorine atom is found to be the most abundant neutral particle. Highly fragmented species such as CF and CF+ become dominant neutral and ionic radical at the high power condition. As the pressure increases. ion density increases but ionization rate decreases due to the decrease in electron temperature. The fractional dissociation of CF4 feed gas decreases with pressure after increasing at the low pressure range. Electron density and temperature are almost independent of flow rate within calculation conditions studied. The fractional dissociation of CF4 monotonically decreases with flow rate. which results in increase in CF3 and decrease in CF density. The calculation results show that the SiO2 etch selectivity improvement correlates to the increase in the relative density of fluorocarbon ion and neutral radicals which has high C/F ratio.

  • PDF

Luminescence Characteristics of ZnGa2O4 Phosphor Thick Films Prepared by Screen Printing Method (스크린 프린팅법을 이용한 ZnGa2O4 형광체 후막의 발광특성)

  • Lee Seung-Kyu;Park Yong-Seo;Choi Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.749-753
    • /
    • 2006
  • The $ZnGa_2O_4$ phosphor thick films were fabricated using a screen printing method on Si(100) substrates at various sintering temperatures. The XRD patterns show that the $ZnGa_2O_4$ thick films have a (311) main peak and a spinel structure with increasing sintering temperatures. The particle sizes of $ZnGa_2O_4$ phosphor were about 100 nm and the thickness of $ZnGa_2O_4$ thick film was $10{\mu}m$. The CL and PL properties of $ZnGa_2O_4$ showed main peak of 420nm and maximum intensity at the sintering temperature of $900^{\circ}C$. These results indicate that $ZnGa_2O_4$ phosphor thick films hold promise for displays such as plasma display panel and field emission display.

Tribology of friction materials containing different metal fibers (마찰재에 함유된 금속섬유의 종류에 따른 마찰 특성)

  • Ko, Kil-Ju;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.55-63
    • /
    • 2001
  • Friction and wear properties of brake friction materials containing different metal fibers (Al, Cu or Steel fibers) were investigated using a pad-on-disk type friction tester. Two different materials(gray iron and Al-MMC)) were used for disks rubbing against the friction materials. Results from ambient temperature tests revealed that the friction material containing Cu fibers sliding against cast iron disk showed a distinct negative ${\mu}$-ν (friction coefficient vs. sliding velocity) relation implying possible stick-slip generation at low speed. The negative ${\mu}$-ν relation was not observed when the Cu-containing friction materials were rubbed against the. Al-MMC counter surface. As applied loads increased, friction materials showed higher friction coefficients comparatively. Friction materials slid against cast iron disks exhibited higher friction coefficients than Al-MMC disks during high temperature tests. On the other hand, high temperature test results suggested that copper fibers in the friction material improved fade resistance and the steel fibers were not compatible with Al-MMC disks showing severe material transfer and erratic friction behavior during sliding at elevated temperatures.

  • PDF

Characteristics Analysis of on Blackware and Whiteware at Excavated Kiln in Gilmyeong-ri Pocheon-si Gyeonggi-do, Korea (경기도 포천시 길명리 가마터 출토 흑유자기와 백자에 대한 특성분석)

  • Koh, Min-Jeong;Kim, Gyu-Ho
    • Journal of Conservation Science
    • /
    • v.22
    • /
    • pp.43-60
    • /
    • 2008
  • This study is investigated the characteristics and the comparison on blackware and whiteware at Gilmyeong-ri kilns, located Poncheon-si, Geonggi province at AD 19c using scientific analysis. It is measured by scientific analysis classified as microstructure observation, physical methods which involved chromaticity, specific gravity, absorption ratio and porosity, and chemical analysis of components of body and glaze. As a result, a particle and a pore of body surface appeared differently by the degree of vitrification. In glaze, Blackware have better on good vitrification than whiteware in the microstructure observation. The physical characteristics of chromaticity, specific gravity, absorption ratio and porosity differed according to degree of vitrification rather than porcelain types. In composition, body of blackware have higher ratio of $Fe_2O_3$ and $TiO_2$ than of whiteware. Also glaze of blackware have higher ratio of $Fe_2O_3$ and $TiO_2$, and lower ratio of $SiO_2$ and $Al_2O_3$ than whiteware. Especially, blackware have higher ratio in the composition of CaO and $P_2O_5$ by which ash is used or not.

  • PDF

An Innovative Solution for the Power Quality Problems in Induction Motor by Using Silica and Alumina Nano Fillers Mixed Enamel for the Coatings of the Windings

  • Mohanadasse, K.;Sharmeela, C.;Selvaraj, D. Edison
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1621-1625
    • /
    • 2015
  • Power quality has always been a concern of power engineers. Certainly an argument can be successfully made that most parts of power engineering have the ultimate objective to improve power quality. AC motors were widely used in industrial and domestic applications. Generally, AC motors were of two types: Induction and Synchronous motors. In motor many parameters like different load cycling, switching, working in hot weather and unbalances creates harmonics which creates major reasons for temperature rise of the motors. Due to high peak value of voltage, harmonics can weaken insulation in cables, windings and capacitors and different electronic components. Higher value of harmonics increase the motor current and decrease the power factor which will reduce the life time of the motor and increase the overall rating of all electrical equipments. Harmonics reduction of all the motors in India will save more power. Coating of windings of the motor with nano fillers will reduce the amount of harmonics in the motor. Based on the previous project works, actions were taken to use the enamel filled with various nano fillers for the coating of the windings of the different AC motors. Ball mill method was used to convert the micro particles of Al2O3, SiO2, TiO2, ZrO2 and ZnO into nano particles. SEM, TEM and XRD were used to augment the particle size of the powder. The synthesized nano powders were mixed with the enamel by using ultrasonic vibrator. Then the enamel mixed with the nano fillers was coated to the windings of the several AC motors. Harmonics were measured in terms of various indices like THD, VHD, CHD and DIN by using Harmonic analyzer. There are many other measures and indices to describe power quality, but none is applicable in all cases and in many instances, these indices may hide more than they show. Sometimes power quality indices were used as a basis of comparison and standardization. The efficiency of the motors was increased by 5 – 10 %. The thermal withstanding capacity of the motor was increased by 5º to 15º C. The harmonics of the motors were reduced by 10 – 50%.

Extraction of Micro Filler from Bio-waste Material (Bio waste 소재로부터의 마이크로 필러 추출)

  • Nam, Gibeop;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.209-214
    • /
    • 2018
  • This paper explain about the development of environmental friendly, low cost and stable supply material i.e., rice husk and shell were used as micro incorporating bio waste filler. Those were processed by ball mill and analyzed through micro observation by FE-SEM, EDS and particle size distribution. The obtained filler was mixed with epoxy resin for the manufacturing of CFRP composite and study tensile properties. In EDS analysis main contents of rice husk and rice husk ash are C, O and Si. When rice husk was burned C and Si ration were increased. Shell powder has C, O and Ca. It caused $CaCO_3$ from shell. Surface weighted mean of rice husk powder is $6.19{\mu}m$ and volume weighted mean is $14.77{\mu}m$. And it has rod type particles which caused hair and husk structure parts. Surface weighted mean of rice husk ash powder is $1.55{\mu}m$ and volume weighted means is $8.20{\mu}m$. Surface weighted mean of shell powder is $2.53{\mu}m$ and volume weighted mean is $5.79{\mu}m$. The tensile decreased with increasing the content of micro filler in CFRP composites. In case of rice husk, the significant decrement of tensile strength was observed. and in case of shell powder, there is no effect of changes take place in tensile strength.

An Experimental Study on the Devolatilization Kinetics of Ashless coal in Fixed and Entrained Conditions (초청정 석탄의 탈휘발 반응률에 관한 실험적 연구)

  • Yu, Da-Yeon;Lee, Byoung-Hwa;Song, Ju-Hun;Lee, Si-Hyun;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.997-1003
    • /
    • 2011
  • In order to investigate devolatilization characteristics for ashless coal with relatively low ash content and high heating value, an experiment was performed in different bed configurations of TGA and DTF(Drop Tube Furnace) at atmospheric pressure condition. The heating rate was $10^{\circ}C$/min up to $950^{\circ}C$ in TGA, while the temperatures of DTF varied from 500 to $1300^{\circ}C$ in step of $200^{\circ}C$. A weight loss and particle temperature were obtained to determine devolatilization kinetics. The kinetic parameters including an activation energy and pre-exponential factor for ashless coal were obtained using Coats-Redfern method in TGA and single step method in DTF. Furthermore, the devolatilization kinetics of the ashless coal were compared with the results of different kinds of conventional coal such as sub-bituminous and bituminous. The results show that the activation energy of devolatilazation for ashless coal is lower than those of others in fixed and entrained conditions.