• Title/Summary/Keyword: SiC coating

Search Result 563, Processing Time 0.022 seconds

Thickness Dependence of CVD-SiC-Based Composite Ceramic for the Mold of the Curved Cover Glass (곡면 커버 글라스용 금형 코팅을 위한 CVD-SiC 기반 세라믹 복합체의 두께에 따른 특성 연구)

  • Kim, Kyoung-Ho;Jeong, Seong-Min;Lee, Myung-Hyun;Bae, Si-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.310-315
    • /
    • 2019
  • The use of a silicon carbide (SiC)-based composite ceramic layer for the mold of a curved cover glass was demonstrated. The stress of SiC/VDR/graphite-based mold structure was evaluated via finite element analysis. The results revealed that the maximum tensile stress primarly occured at the edge region. Moreover, the stress can be reduced by employing a relatively thick SiC coating layer and, therefore, layers of various thicknesses were deposited by means of chemical vapor deposition. During growth of the layer, the orientation of the facets comprising the SiC grain became dominant with additional intense SiC(220) and SiC(004). However, the roughness of the SiC layer increased with increasing thickness of the layer and. Hence, the thickness of the SiC layer needs to be adjusted by values lower than the tolerance band of the curved cover glass mold.

Improvement of Electrochemical Performance of LiFePO4 by Carbon Coating and Morphology Control into Porous Structure (LiFePO4/C의 carbon coating 방법 및 다공성 구조 형성에 의한 전기화학적 특성 개선)

  • Kong, Ki Chun;Ju, Jeh Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.229-236
    • /
    • 2014
  • In this study, the method to improve the electrochemical performance of $LiFePO_4$ by carbon coating and morphology control into porous structure was studied. The synthesis of $LiFePO_4$ was done by coprecipitation method by two step procedure. In the first step $FePO_4$ precursor was synthesized by coprecipitation method, followed by impregnation of lithium into the precursor at $750^{\circ}C$. The carbon coating was done by both physical and chemical coating processes. Using the physical coating process, the amount of coating layer was 6% and the capacity achieved was 125 mAh/g. In case of chemical coating process, the active material delivered 130~140 mAh/g, which is about 40% improvement of delivered capacity compared to uncoated $LiFePO_4$. For the morphology control into porous structure, we added nano particles of $Al_2O_3$ or $SiO_2$ into the active materials and formed the nanocomposite of ($Al_2O_3$ or $SiO_2$)/$LiFePO_4$. Between them, $SiO_2/LiFePO_4$ porous nanocomposite showed larger capacity of 132 mAh/g.

Properties of Silicon Nitride Deposited by RF-PECVD for C-Si solar cell (결정질 실리콘 태양전지를 위한 실리콘 질화막의 특성)

  • Park, Je-Jun;Kim, Jin-Kuk;Song, Hee-Eun;Kang, Min-Gu;Kang, Gi-Hwan;Lee, Hi-Deok
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.11-17
    • /
    • 2013
  • Silicon nitride($SiN_x:H$) deposited by radio frequency plasma enhanced chemical vapor deposition(RF-PECVD) is commonly used for anti-reflection coating and passivation in crystalline silicon solar cell fabrication. In this paper, characteristics of the deposited silicon nitride was studied with change of working pressure, deposition temperature, gas ratio of $NH_3$ and $SiH_4$, and RF power during deposition. The deposition rate, refractive index and effective lifetime were analyzed. The (100) p-type silicon wafers with one-side polished, $660-690{\mu}m$, and resistivity $1-10{\Omega}{\cdot}cm$ were used. As a result, when the working pressure increased, the deposition rate of SiNx was increased while the effective life time for the $SiN_x$-deposited wafer was decreased. The result regarding deposition temperature, gas ratio and RF power changes would be explained in detail below. In this paper, the optimized condition in silicon nitride deposition for silicon solar cell was obtained as 1.0 Torr for the working pressure, $400^{\circ}C$ for deposition temperature, 500 W for RF power and 0.88 for $NH_3/SiH_4$ gas ratio. The silicon nitride layer deposited in this condition showed the effective life time of > $1400{\mu}s$ and the surface recombination rate of 25 cm/s. The crystalline silicon solar cell fabricated with this SiNx coating showed 18.1% conversion efficiency.

Preparation of Carbon Composite with High Oxidation Resistance by MoSi2 Dispersion

  • Goto, S.;Kodera, M.;Toda, S.;Fujimori, H.;Ioku, K.
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.115-118
    • /
    • 1999
  • Carbon composites with $MoSi_2$ dispersion were prepared by hot-pressing at $1700^{\circ}C$ under 30 MPa for 1 h using polysilazance as binding material. The composites consisted of C, $Mo_{4.8}Si_3C_{0.6}$ and SiC. Bulk density and porosity of the carbon composites with 10 vol% $MoSi_2$ was 1.8g.$\textrm{cm}^{-3}$ and 34%, respectively. This composite was oxidized about 0.05mm from the surface of the carbon composite after oxidation test at $1500^{\circ}C$ for 10h in air. Formation of the $SiO_2$ glass layer was observed by SEM. When this composite suffered damage in the coating layer, it had hardly farther oxidation because of its self-repairing property. The composite prepared in this study indicated good oxidation resistance.

  • PDF

Characteristic and moisture permeability of SiOxCy thin film synthesized by Atmospheric pressure-plasma enhanced chemical vapor deposition

  • Oh, Seung-Chun;Kim, Sang-Sik;Shin, Jung-Uk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.171-171
    • /
    • 2011
  • Atmospheric pressure- plasma enhanced chemical vapor deposition(AP-PECVD)Processes are recognized as promising and cost effective methods for wide-area coating on sheets of steel, glass, polymeric web, etc. In this study, $SiO_xC_y$ thin films were deposited by using AP-PECVD with a dielectric barrier discharge(DBD). The characteristic of $SiO_xC_y$ thin films were investigated as afunction of the HMDSO/O2/He flow rate. And the moisture permeability of $SiO_xC_y$ thin films was studied. The $SiO_xC_y$ thin films were characterized by the Fourier-transformed Infrared(FT-IR) spectroscopy and also investigated by X-ray photo electron spectroscopy(XPS), Auger Electron Spectroscopy(AES). The moisture permeability of $SiO_xC_y$ thin films was investigated by $H_2O$ permeability tester Detailed experimental results will be demonstrated through th present work.

  • PDF

Effect of Alumina Coating on Mechanical Properties of SiC Whisker Reinforced Silicon Nitrate Ceramic Composite

  • Lee, Ki-Ju;Xu, Jing-Wen;Hwang, Woon-Suk;Cho, Won-Seung
    • Corrosion Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.24-28
    • /
    • 2007
  • Alumina coated SiC whiskers were prepared by homogeneous precipitation of aluminum sulfate. The Si3N4 composites reinforced with coated SiC whiskers were fabricated by hot-pressing at $1800^{\circ}C$ for 2 h under an $N_{2}$ atmosphere of 0.1 MPa to examine the effects of coated whiskers on the mechanical properties of SiC whisker reinforced $Si_{3}N_{4}$ composite. By the addition of alumina coated SiC whiskers instead of as received ones, the fracture toughness of composite was about 6.7 $MPam^{1/2}$ which was slightly lower than as received SiC whisker reinforced composite. This result seems to be caused by the fact that the crack deflection and whisker pull-out were decreased. Thus, alumina coated SiC whiskers were considered to form relatively strong interface bond with $Si_{3}N_{4}$ matrix.

High Temperature Friction Characteristic of $Al-SiC_{p}$ Composite Coating Prepared by Plasma Thermal Spray (플라즈마 용사에 의해 제조한 $Al-SiC_{p}$ 복합재료 코팅층의 고온마찰특성)

  • 민준원;유승을;서동수
    • Tribology and Lubricants
    • /
    • v.19 no.5
    • /
    • pp.274-279
    • /
    • 2003
  • $Al-SiC_{p}$ composite layer was prepared by plasma thermal spray on aluminum substrate. The homogeneously dispersed composite powder for thermal spray was fabricated by mechanical alloying with ball mill. The friction tests of the composite layers and commercial aluminum alloys for comparison were performed in the temperature range of 20∼$260^{\circ}C$ with the interval of $40^{\circ}C$ with steel counter-face. Friction coefficient was recorded during test sequence, and the microstructure of surface and debris was investigated by optical and scanning electron microscope. Friction coefficients of composite and aluminum alloys at room temperature were similar except pure aluminum. As the temperature increase, friction coefficient was increased rapidly in AC4C, AC2A. But friction coefficient of $Al-SiC_{p}$ composite was not increased so much up to $220^{\circ}C$. Consequently, the reinforcement of $SiC_{p}$ into aluminum matrix increased the stability of friction coefficient as well as wear resistance.

Simulation of the Digital Image Processing Algorithm for the Coating Thickness Automatic Measurement of the TRISO-coated Fuel Particle

  • Kim, Woong-Ki;Lee, Young-Woo;Ra, Sung-Woong
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.36-40
    • /
    • 2005
  • TRISO (Tri-Isotropic)-coated fuel particle is widely applied due to its higher stability at high temperature and its efficient retention capability for fission products in the HTGR (high temperature gas-cooled reactor), one of the highly efficient Generation IV reactors. The typical ball-type TRISO-coated fuel particle with a diameter of about 1 mm is composed of a nuclear fuel particle as a kernel and of outer coating layers. The coating layers consist of a buffer PyC, inner PyC, SiC, and outer PyC layer. In this study, a digital image processing algorithm is proposed to automatically measure the thickness of the coating layers. An FBP (filtered backprojection) algorithm was applied to reconstruct the CT image using virtual X-ray radiographic images for a simulated TRISO-coated fuel particle. The automatic measurement algorithm was developed to measure the coating thickness for the reconstructed image with noises. The boundary lines were automatically detected, then the coating thickness was circularly by the algorithm. The simulation result showed that the measurement error rate was less than 1.4%.

Structural and Dielectric Properties of $PbTiO_3$ Ferroelectric Thin Film Prepared by Sol-Gel Processing (Sol-Gel법으로 제조된 $PbTiO_3$ 강유전 박막의 구조적, 유전적 특성)

  • 김준한;백동수;박창엽
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.695-700
    • /
    • 1993
  • In this study, we prepared Pb-Ti stock solution by sol-gel processing and deposited PbTiO3 thin film on a Pt coated SiO2/Si wafer by spin coating using the stock solution. We used lead acetate trihydrate and titanium isopropoxide. The stock solution was partially hydrolized and finally a 0.25M coating solution was prepared. We achieved spin coating at 4000rpm for 30 seconds and heated the thin film at 375$^{\circ}C$ for 5 minutes and at $600^{\circ}C$ for 5 minutes successively, first and second heating state. And the thin film was finally sintered at 90$0^{\circ}C$ for 1 hour in the air. The upper electrode of the thin film was made by gold sputtering and was cricle shape with radius 0.4mm. Measured dielectric constant, dissipation factor and phase transition temperature(Cuire Temp.) were about 275, 0.02 and 521$^{\circ}C$ respectively. To observe ferroelectric characteristics we calculated Pr(remnant polarization) and Ec(coercive field) byhysteresis curve. Ec was 72kV/cm and Pr was 11.46$\mu$C/$\textrm{cm}^2$.

  • PDF

Effect of Gas ratio on the anti-reflective properties of SiNx by PECVD

  • Heo, Jong-Kyu;Ai, Dao Vinh;Cho, Jae-Hyun;Han, Kyu-Min;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.200-201
    • /
    • 2008
  • 태양전지 제작 시 반사방지막(Anti-reflection Coating)이 태양전지 효율에 미치는 영향을 알아보기 위한 실험으로 최적의 가스비를 알아보기 위하여 Plasma Enhanced Chemical Vapor Deposition(PECVD)를 이용한 Silicon nitride 증착 실험이다. SiH4 가스를 45 sccm으로 고정시킨 상태에서 NH3를 25,45,60,90,135 sccm으로 가변하여 Carrier Lifetime과 Refractive index를 측정하였다. PECVD의 조건은 기판온도 $450^{\circ}C$, Chamber 압력 1 Torr, 증착두께 $1000\AA$으로 고정하였다. 증착 후 500, 600, 700, $800^{\circ}C$로 열처리를 하고나서 Carrier Lifetime을 측정하여 열처리에 대한 효과도 알아보았다.

  • PDF