• Title/Summary/Keyword: SiC buffer layer

Search Result 153, Processing Time 0.027 seconds

A Study on the Structure and Electrical Properties of CeO$_2$ Thin Film (CeO$_2$ 박막의 구조적, 전기적 특성 연구)

  • 최석원;김성훈;김성훈;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.469-472
    • /
    • 1999
  • CeO$_2$ thin films have used in wide applications such as SOI, buffer layer, antirflection coating, and gate dielectric layer. CeO$_2$takes one of the cubic system of fluorite structure and shows similar lattice constant (a=0.541nm) to silicon (a=0.543nm). We investigated CeO$_2$films as buffer layer material for nonvolatile memory device application of a single transistor. Aiming at the single transistor FRAM device with a gate region configuration of PZT/CeO$_2$ /P-Si , this paper focused on CeO$_2$-Si interface properties. CeO$_2$ films were grown on P-type Si(100) substrates by 13.56MHz RF magnetron sputtering system using a 2 inch Ce metal target. To characterize the CeO$_2$ films, we employed an XRD, AFM, C-V, and I-V for structural, surface morphological, and electrical property investigations, respectively. This paper demonstrates the best lattice mismatch as low as 0.2 % and average surface roughness down to 6.8 $\AA$. MIS structure of CeO$_2$ shows that breakdown electric field of 1.2 MV/cm, dielectric constant around 13.6 at growth temperature of 200 $^{\circ}C$, and interface state densities as low as 1.84$\times$10$^{11}$ cm $^{-1}$ eV$^{-1}$ . We probes the material properties of CeO$_2$ films for a buffer layer of FRAM applications.

  • PDF

Control of Residual Stress in Diamond Film Fabricated by Hot Filament CVD (열 필라멘트 CVD법에 의해서 제작한 다이아몬드 막의 잔류응력제어)

  • 최시경;정대영;최한메
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.793-798
    • /
    • 1995
  • The relaxation of the intrinsic stresses in the diamond films fabricated by the hot filament CVD was studied, and it was confirmed that the tensile intrinsic stresses in the films could be controlled without any degradation in the quality of the diamond films. The tensile intrinsic stresses in the films decreased from 2.97 to 1.42 GPa when the substrate thickness increased from 1 to 10mm. This result showed that the residual stress was affected by the substrate thickness as well as by the interaction between grains. Applying of +50 V between the W filament and the Si substrate during deposition, the tensile intrinsic stress in the film deposited at 0 V was decreased from 2.40 GPa to 0.71 GPa. Such large decrease in the tensile intrinsic stress was due to $\beta$-SiC which acted as a buffer layer for the stress relaxation. However, the application of the large voltage above +200V resulted in the change of quality of the diamond film, and nearly had no effect on relaxation in the tensile intrinsic stress.

  • PDF

Investigation of the Polarity in GaN Grown by HVPE (HVPE법으로 성장시킨 GaN의 극성 분석)

  • 정회구;정수진
    • Korean Journal of Crystallography
    • /
    • v.14 no.2
    • /
    • pp.93-104
    • /
    • 2003
  • The crystals of group-Ⅲ nitride semiconductors with wurtzite structure exhibit a strong polarity. Especially, GaN has characteristics of different growth rate, anisotropic electrical and optical properties due to the polarity. In this work, GaN epilayer was grown and the polarities of the crystals were observed by the chemical wet etching and SP-EFM. GaN thin films were deposited on c-plane A1₂O₃ substrate under the variations of growth conditions by HVPE such as the deposition temperature of the buffer layer, the deposition time, the ratio of Group-V and Ⅲ and the deposition temperature of the film. The adquate results were obtained under the conditions of 500℃, 90 seconds, 1333 and 1080℃, respectively. It is observed that the GaN layer grown without the buffer layer has N-polarity and the GaN layer grown on the buffer layer has Ga-polarity. Fine crystal single particles were grown on c-plane A1₂O₃ and SiO₂, layer. The external shape of the crystal shows {10-11}{10-10}(000-1) planes as expected in the PBC theory and anisotropic behavior along c-axis is obvious. As a result of etching on each plane, (000-1) and {10-11}planes were etched strongly due to the N-polarity and {10-10} plane was not affected due to the non-polarity. In the case of the crystal grown on c-plane A1₂O₃, two types of crystals were grown. They were hexagonal pyramidal-shape with {10-11}plane and hexagonal prism with basal plane. The latter might be grown by twin plane reentrant edge (TPRE) growth.

Highly Stabilized Protocrystalline Silicon Multilayer Solar Cells (고 안정화 프로터결정 실리콘 다층막 태양전지)

  • Lim Koeng Su;Kwak Joong Hwan;Kwon Seong Won;Myong Seung Yeop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.102-108
    • /
    • 2005
  • We have developed highly stabilized (p-i-n)-type protocrystalline silicon (pc-Si:H) multilayer solar cells. To achieve a high conversion efficiency, we applied a double-layer p-type amorphous silicon-carbon alloy $(p-a-Si_{1-x}C_x:H)$ structure to the pc-Si:H multilayer solar cells. The less pronounced initial short wavelength quantum efficiency variation as a function of bias voltage proves that the double $(p-a-Si_{1-x}C_x:H)$ layer structure successfully reduces recombination at the p/i interface. It was found that a natural hydrogen treatment involving an etch of the defective undiluted p-a-SiC:H window layer before the hydrogen-diluted p-a-SiC:H buffer layer deposition and an improvement of the order in the window layer. Thus, we achieved a highly stabilized efficiency of $9.0\%$ without any back reflector.

  • PDF

The Heat Treatment Effect of ZrO2 Buffer Layer on the Electrical Properties of Pt/SrBi2Ta2O9/ZrO2/Si Structure (ZrO2완충층의 후열처리 조건이 Pt/SrBi2Ta2O9/ZrO2/Si 구조의 전기적 특성에 미치는 영향)

  • 정우석;박철호;손영국
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.52-61
    • /
    • 2003
  • $SrBi_2Ta_2O_9(SBT)$and$ZrO_2$thin films for MFIS structure(Metal-Ferroelectric-Insulator-Semiconductor) were deposited by RF magnetron sputtering method. In order to investigate the effect of heat treatment of insulator layers and MFIS structure, the insulator layers were heat treated from $550^{circ}C;to; 850^{\circ}C$in conventional furnace or RTA furnace under$O_2$and Ar ambient, respectively. After then, C-V characteristics and leakage current were measured. The capacitor with 20 nm thick $ZrO_2$layer treated at RTA$750^{circ}C;in;O_2$ atmosphere had the largest memory window. The C-V and leakage current characteristics of the$Pt/SBT(260nm)/ZrO_2(20nm)/Si$structure were better than those of$Pt/SBT(260nm)/Si$ structure. These results showed that$ZrO_2$films took a role of buffer layer effectively.

Effects of thermal annealing of AlN thin films deposited on polycrystalline 3C-SiC buffer layer (다결정 3C-SiC 버퍼층위 증착된 AlN 박막의 열처리 효과)

  • Hong, Hoang-Si;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.112-112
    • /
    • 2009
  • In this study, the effect of a long post-deposition thermal annealing(600 and 1000 $^{\circ}C$) on the surface acoustic wave (SAW) properties of polycrystalline (poly) aluminum-nitride (AlN) thin films grown on a 3C-SiC buffer layer was investigates. The poly-AlN thin films with a (0002) preferred orientation were deposited on the substrates by using a pulsed reactive magnetron sputtering system. Experimental results show that the texture degree of AlN thin film was reduced along the increase in annealing temperature, which caused the decrease in the electromechanical coupling coefficient ($k^2$). The SAW velocity also was decreased slightly by the increase in root mean square (RMS) roughness over annealing temperature. However, the residual stress in films almost was not affect by thermal annealing process due to small lattice mismatch different and similar coefficient temperature expansion (CTE) between AlN and 3C-SiC. After the AlN film annealed at 1000 $^{\circ}C$, the insertion loss of an $IDT/AlN/3C-SiC/SiO_2/Si$ structure (-16.44 dB) was reduced by 8.79 dB in comparison with that of the as-deposited film (-25.23 dB). The improvement in the insertion loss of the film was fined according to the decrease in the grain size. The characteristics of AlN thin films were also evaluated using Fourier transform-infrared spectroscopy (FT-IR) spectra and X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) images.

  • PDF

Performances of a-Si:H thin-film solar cells with buffer layers at TCO/p a-SiC:H interface (CO/p a-SiC:H 계면의 버퍼층에 따른 비정질 실리콘 박막태양전지 동작특성)

  • Lee, Ji-Eun;Jang, Ji-Hun;Jung, Jin-Won;Park, Sang-Hyun;Jo, Jun-Sik;Yoon, Kyung-Hoon;Song, Jin-Soo;Kim, Dong-Hwan;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.32-32
    • /
    • 2009
  • 실리콘 박막 태양전지에서 전면 투명전도막(TCO)은 태양전지의 전기, 광학적 특성을 결정하는 중요한 기능을 한다. ZnO:Al TCO는 기존에 사용되던 $SnO_2:F$와는 비정질 실리콘(a-Si:H) 박막 태양전지의 윈도우 층으로 사용되는 p a-SiC:H와의 일함수(work function) 차이로 인해 접촉전위(contact barrier)를 형성하게 되며 이로 인해 태양전지의 충진율(fill factor)이 $SnO_2:F$에 비해 감소하는 단점을 보인다. 본 연구에서는 ZnO:Al/p a-SiC:H 계면의 접촉전위 발생원인 및 태양전지 충진율 감소현상에 관한 정확한 원인규명을 위해 다양한 특성을 갖는 버퍼층을 삽입하여 계면특성 및 태양전지의 동작특성을 분석하고자 한다.

  • PDF

Influence of Growth Temperature for Active Layer and Buffer Layer Thickness on ZnO Nanocrystalline Thin Films Synthesized Via PA-MBE

  • Park, Hyunggil;Kim, Younggyu;Ji, Iksoo;Kim, Soaram;Lee, Sang-Heon;Kim, Jong Su;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.203.1-203.1
    • /
    • 2013
  • Zinc oxide (ZnO) nanocrystalline thin films on various growth temperatures for active layer and different buffer layer thickness were grown by plasma-assisted molecular beam epitaxy (PA-MBE) on Si substrates. The ZnO active layer were grown with various growth temperature from 500 to $800^{\circ}C$ and the ZnO buffer layer were grown for different time from 5 to 40 minutes. To investigate the structural and optical properties of the ZnO thin films, scanning electron microscope (SEM), X-ray diffractometer (XRD), and photoluminescence (PL) spectroscopy were used, respectively. In the SEM images, the ZnO thin films have high densification of grains and good roughness and uniformity at $800^{\circ}C$ for active layer growth temperature and 20 minutes for buffer layer growth time, respectively. The PL spectra of ZnO buffer layers and active layers display sharp near band edge (NBE) emissions in UV range and broad deep level emissions (DLE) in visible range. The intensity of NBE peaks for the ZnO thin films significantly increase with increase in the active layer growth temperature. In addition, the NBE peak at 20 minutes for buffer layer growth time has the largest emission intensity and the intensity of DLE peaks decrease with increase in the growth time.

  • PDF

A Study on the Characteristic of PZT Thin Film Deposited on New Buffer Layer by Sputtering (스퍼터링으로 제조한 새로운 완충막 위의 PZT 박막 특성에 관한 연구)

  • 주재현;주승기
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.332-338
    • /
    • 1993
  • TiN/Ti is the best buffer layer between PZT thin film and si substrate among the Ti, TiN, ZrN, TiN/Ti, ZrN/Ti. The amorphous PZT films deposited on TiN/Ti buffer layer directly transform into perovskite phase when rapid thermal annealed for 30sec above 55$0^{\circ}C$. As Rapid Thermal Annealing(RTA) temperature increased, the remanent polarization(Pr) and dielectric constant($\varepsilon$r) increased and then showed Pr=21 $\varepsilon$r=593 when rapid thermal annealed 80$0^{\circ}C$ for 30sec. On the contrary the leakage current increased with increasing RTA temperature due to the formation of void made by Pb evaporationand grain cohesion.

  • PDF

Effects of GaN Buffer Layer Thickness on Characteristics of GaN Epilayer (GaN 완충층 두께가 GaN 에피층의 특성에 미치는 영향)

  • Jo, Yong-Seok;Go, Ui-Gwan;Park, Yong-Ju;Kim, Eun-Gyu;Hwang, Seong-Min;Im, Si-Jong;Byeon, Dong-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.575-579
    • /
    • 2001
  • GaN buffer layer and epilayer have been grown on sapphire (0001) by metal organic chemical vapor deposition (MOCVD). GaN buffer layer ranging from 26 nm to 130 nm in thickness was grown at 55$0^{\circ}C$ prior to the 4 $\mu\textrm{m}$ thick GaN epitaxial deposition at 110$0^{\circ}C$. After GaN buffer layer growth, buffer layer surface was examined by atomic force microscopy (AFM). As the thickness of GaN buffer layer was increased, surface morphology of GaN epilayer was investigated by scanning electron microscopy (SEM). Double crystal X-ray diffraction (DCXRD) and Raman spectroscopy were employed to study crystallinity of GaN epilayers. Optical properties of GaN epilayers were measured by photoluminescence (PL). The epilayer grown with a thin buffer layer had rough surface, and the epilayer grown with a thick buffer layer had mirror-like surface of epilayer. Although the stress on the latter was larger than on the former, its crystallinity was much better. These results imply that the internal free energy is decreased in case of the thick buffer layer. Decrease in internal free energy promotes the lateral growth of the GaN film, which results in the smoother surface and better crystallinity.

  • PDF