• 제목/요약/키워드: SiC boundary

검색결과 159건 처리시간 0.028초

Microstructural Wear Mechanism of $Al_2O_3-5$ vol% SiC nanocomposite and $Si_3N_4$Ceramics

  • Riu, Doh-Hyung;Kim, Yoon-Ho;Lee, Soo-Wohn;Koichi Niihara
    • 한국분말재료학회지
    • /
    • 제8권3호
    • /
    • pp.179-185
    • /
    • 2001
  • Through the observation of wear scar of two ceramic materials, microstructural wear mechanisms was investigated. As for the $Al_2O_3$-5 vol% SiC nanocomposite, the grain boundary fracture was suppressed by the presence of SiC nano-particles. The intragranular SiC particles have inhibited the extension of plastic deformation through the whole grain. Part of plastic deformation was accommodated around SiC particles, which made a cavity at the interface between SiC and matrix alumina. On the other hand, gas-pressure sintered silicon nitride showed extensive grain boundary fracture due to the thermal fatigue. The lamination of wear scar was initiated by the dissolution of grain boundary phase. These two extreme cases showed the importance of microstructures in wear behavior.

  • PDF

Point defects and grain boundary effects on tensile strength of 3C-SiC studied by molecular dynamics simulations

  • Li, Yingying;Li, Yan;Xiao, Wei
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.769-775
    • /
    • 2019
  • The tensile strength of irradiated 3C-SiC, SiC with artificial point defects, SiC with symmetric tilt grain boundaries (GBs), irradiated SiC with GBs are investigated using molecular dynamics simulations at 300 K. For an irradiated SiC sample, the tensile strength decreases with the increase of irradiation dose. The Young's modulus decreases with the increase of irradiation dose which agrees well with experiment and simulation data. For artificial point defects, the designed point defects dramatically decrease the tensile strength of SiC at low concentration. Among the point defects studied in this work, the vacancies drop the strength the most seriously. SiC symmetric tilt GBs decrease the tensile strength of pure SiC. Under irradiated condition, the tensile strengths of all SiC samples with grain boundaries decrease and converge to certain value because the structures become amorphous and the grain boundaries disappear after high dose irradiation.

$B_4C-SiC$ 복합체의 상압소결거동 (Sintering Behavior of $B_4C-SiC$ Composite)

  • 김득중;강을손
    • 한국세라믹학회지
    • /
    • 제31권7호
    • /
    • pp.739-744
    • /
    • 1994
  • The B4C-C system was investigated to gain an understanding of the sintering behaviors of B4C. In order to get sintered density of 97% TD, sintering temperature of 225$0^{\circ}C$ was necessary. Since such a high temperature operation is actually difficult on a commercial basis, our objective was to examine the possibility of decreasing the sintering temperature by adding SiC. The addition of SiC in B4C increases the sintering rate about at 210$0^{\circ}C$ and results in a fine microstructure with more than 98% relative density on 55 wt% B4C-40wt% SiC-5 wt% C composition. The probability of liquid phase sintering was investigated, but the evidences of liquid phase formation were not observed with XRD and TEM observation. It was proposed that the addition of SiC and carbon to B4C reduce interface energy during sintering, which results in enhanced grain-boundary diffusion. Thus, the enhanced grain-boundary diffusion and retarded grain growth by SiC improve densification.

  • PDF

SHS 화학로에 의한 (B.Si)C 복합체의 합성 및 기계적 특성에 관한 연구 (Study on Synthesis and Mechanical Properties of (B.Si)C Composite by Self Propagating High Temperature Synthesis Chemical Furnace)

  • 이형복;조덕호;이재원
    • 한국세라믹학회지
    • /
    • 제32권4호
    • /
    • pp.413-418
    • /
    • 1995
  • The (B.Si)C composite was prepared form the mixture of metal boron, silicon, and carbon powders in Ar atmosphere by Self-propagating High-temperature Synthesis Chemical Furnace. The characterization of synthesized power and sintered body were investigated. The microstructure of sintered body suggested that SiC boundary was made between B4C grains. The most excellent mechanical properties, the relative density of 95% oftheoretical value, 3 point flexural strength of 360MPa, and fracture toughness of 3.6MN/m3/2 could be obtained in 80wt% B4C-20 wt% SiC composite were obtained.

  • PDF

탄화규소-강 미끄럼에서의 마모특성 (A Tribological Study of SiC-Steel Couples)

  • 장복기;김윤주
    • 한국세라믹학회지
    • /
    • 제34권1호
    • /
    • pp.7-12
    • /
    • 1997
  • 건조 및 다습한 대기의 무윤활 또는 액체 윤활, 미끄럼 속도 그리고 온도 등 여러 조건 하에서 SiC-강 미끄럼 시 SiC가 나타내는 마모거동에 대하여 조사하였다. 또 SiC의 제조공정이 SiC 마모에 미치는 영향도 미끄럼 속도를 달리하면서 고찰하였다. 무윤활 미끄럼 시 대기 습도는 일종의 윤활제 역할을 하며, 특히 대기가 매우 건조한 조건 하에서 미끄럼 속도는 마모에 큰 영향을 미친다. 그리고 SiC의 제조공정 및 재료표면의 거칠기는 미끄럼 속도의 크기여하에 따라 상이한 마모거동을 초래한다. 특히 온도는 마모를 심화시키는 요인이어서 윤활 미끄럼 조건 하에서도 마모를 크게 가속한다.

  • PDF

입계상 변화가 질화규소의 요업체의 파괴인성에 미치는 영향 (Effect of Change of Grain-Boundary Phases on the Fracture Toughness of Silicon Nitride Ceramics)

  • 이상훈;박희동;이재도;김도연
    • 한국재료학회지
    • /
    • 제5권6호
    • /
    • pp.699-705
    • /
    • 1995
  • 질화규소 요업체에서 입계상의 변화가 파괴인성에 미치는 영향에 대해 살펴보았다 실험에는 Si$_3$N$_4$-Y$_2$O$_3$-SiO$_2$(YS)계와 Si$_3$N$_4$-Y$_2$O$_3$-A1$_2$O$_3$(YA) 계를 사용하였으며, 175$0^{\circ}C$에서 Can/HIP 처리한 후 1800~200$0^{\circ}C$ 온도구간에서 열처리시키면서 입계상의 변화에 따른 파괴인성의 변화를 조사하였다. 열처리 온도구간에서 입계상이 비정질상만으로 존재하였던 YA계의 경우는 열처리 온도가 증가되어 입성장됨에 따라 파괴인성 값이 증가되었으나, 190$0^{\circ}C$ 이상에서 열처리될 때 입계상이 결정상에서 비정질상으로 변화하였던 YS계의 경우는 오히려 파괴인성 값이 급격히 감소되었다. YS계에서 파괴인성의 급격한 저하는 열처리 온도 증가에 따라 입계상이 결정상과 비정질상의 공존 상태에서 비정질상만의 상태로 전이하며 파괴거동에 영향을 미쳤기 때문이라고 생각된다.

  • PDF

Al alloy와의 경계면을 포함한 A356/SiCw의 충격거동 (Impact behavior of including the boundary between A356/SiCw and Al alloy)

  • 조종인;남현욱;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.97-100
    • /
    • 2002
  • In this research, the impact behavior of the boundary between MMC-reinforced SiC whisker and Al alloy were studied. It is known that the resultant of the interfacial reaction between SiC whisker and Al alloy has brittle and low toughness property. In this paper, impact behavior of graded MMC & Al alloy shows the interfacial opening at the boundary. Generally this phenomenon is generated by thermal residual stress, brittle interfacial reaction resultant and difference of the deflection. So, these results may be interpreted as a macroscopic method of measuring the interfacial strength between matrix and reinforcement

  • PDF

소결조제에 따른 $Si_{3}N_{4}/SiC$ 초미립복합재료의 고온강도변화 (Change of high temperature strength of $Si_{3}N_{4}/SiC$ nanocomposites with sintering additives)

  • 황광택;김창삼;정덕수;오근호
    • 한국결정성장학회지
    • /
    • 제6권4호
    • /
    • pp.558-563
    • /
    • 1996
  • 첨가된 소결조제가 다른 $Si_{3}N_{4}/20$ vol% SiC 초미립복합재료의 파괴강도를 측정하였다. 소결조제로서 6 wt% $Y_{2}O_{3}$와 2 wt% $Al_{2}O_{3}$를 사용한 시편의 실온강도는 높았지만 낮은 입계상의 연화온도에 기인하여 급격한 강도저하가 나타났다. 소결조제로서 8 wt% $Y_{2}O_{3}$만을 사용한 시편의 $1400^{\circ}C$에서의 고온강도가 높았는데 이는 높은 입계상 연화온도와 입계유리상의 결정화에 기인하는 것으로 판단하였다.

  • PDF

실리콘의 이중증착에 의한 산화막 신뢰성 향상 (Reliability Improvement of Thin Oxide by Double Deposition of Silicon)

  • 박진성;양권승
    • 한국세라믹학회지
    • /
    • 제31권1호
    • /
    • pp.74-78
    • /
    • 1994
  • Degradation of thin oxide by doped poly-Si and its improvement were studied. The gate oxide can be degraded by phosphorous in poly-Si doped POCl3. The degradation is increased with the decrement of sheet resistance and poly-Si thickness. Oxide failures of amorphous-Si are higher than those of poly-Si. In-situ double deposition of amorphous-Si, 54$0^{\circ}C$/30 nm, and poly-Si, 6$25^{\circ}C$/220 nm, forms the mismatch structure of grain boundary between amorphous-Si and poly-Si, and suppresses the excess phosphorous on oxide surface by the mismatch structure. The control of phosphorous through grain boundary improves the oxide reliability.

  • PDF

Implementation and Evaluation of Interleaved Boundary Conduction Mode Boost PFC Converter with Wide Band-Gap Switching Devices

  • Jang, Jinhaeng;Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.985-996
    • /
    • 2018
  • The implementation and performance evaluation of an interleaved boundary conduction mode (BCM) boost power factor correction (PFC) converter is presented in this paper by employing three wide band-gap switching devices: a super junction silicon (Si) MOSFET, a silicon carbide (SiC) MOSFET and a gallium nitride (GaN) high electron mobility transistor (HEMT). The practical considerations for adopting wide band-gap switching devices to BCM boost PFC converters are also addressed. These considerations include the gate drive circuit design and the PCB layout technique for the reliable and efficient operation of a GaN HEMT. In this paper it will be shown that the GaN HEMT exhibits the superior switching characteristics and pronounces its merits at high-frequency operations. The efficiency improvement with the GaN HEMT and its application potentials for high power density/low profile BCM boost PFC converters are demonstrated.