• Title/Summary/Keyword: SiC boundary

Search Result 159, Processing Time 0.028 seconds

Microstructural Wear Mechanism of $Al_2O_3-5$ vol% SiC nanocomposite and $Si_3N_4$Ceramics

  • Riu, Doh-Hyung;Kim, Yoon-Ho;Lee, Soo-Wohn;Koichi Niihara
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.179-185
    • /
    • 2001
  • Through the observation of wear scar of two ceramic materials, microstructural wear mechanisms was investigated. As for the $Al_2O_3$-5 vol% SiC nanocomposite, the grain boundary fracture was suppressed by the presence of SiC nano-particles. The intragranular SiC particles have inhibited the extension of plastic deformation through the whole grain. Part of plastic deformation was accommodated around SiC particles, which made a cavity at the interface between SiC and matrix alumina. On the other hand, gas-pressure sintered silicon nitride showed extensive grain boundary fracture due to the thermal fatigue. The lamination of wear scar was initiated by the dissolution of grain boundary phase. These two extreme cases showed the importance of microstructures in wear behavior.

  • PDF

Point defects and grain boundary effects on tensile strength of 3C-SiC studied by molecular dynamics simulations

  • Li, Yingying;Li, Yan;Xiao, Wei
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.769-775
    • /
    • 2019
  • The tensile strength of irradiated 3C-SiC, SiC with artificial point defects, SiC with symmetric tilt grain boundaries (GBs), irradiated SiC with GBs are investigated using molecular dynamics simulations at 300 K. For an irradiated SiC sample, the tensile strength decreases with the increase of irradiation dose. The Young's modulus decreases with the increase of irradiation dose which agrees well with experiment and simulation data. For artificial point defects, the designed point defects dramatically decrease the tensile strength of SiC at low concentration. Among the point defects studied in this work, the vacancies drop the strength the most seriously. SiC symmetric tilt GBs decrease the tensile strength of pure SiC. Under irradiated condition, the tensile strengths of all SiC samples with grain boundaries decrease and converge to certain value because the structures become amorphous and the grain boundaries disappear after high dose irradiation.

Sintering Behavior of $B_4C-SiC$ Composite ($B_4C-SiC$ 복합체의 상압소결거동)

  • 김득중;강을손
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.739-744
    • /
    • 1994
  • The B4C-C system was investigated to gain an understanding of the sintering behaviors of B4C. In order to get sintered density of 97% TD, sintering temperature of 225$0^{\circ}C$ was necessary. Since such a high temperature operation is actually difficult on a commercial basis, our objective was to examine the possibility of decreasing the sintering temperature by adding SiC. The addition of SiC in B4C increases the sintering rate about at 210$0^{\circ}C$ and results in a fine microstructure with more than 98% relative density on 55 wt% B4C-40wt% SiC-5 wt% C composition. The probability of liquid phase sintering was investigated, but the evidences of liquid phase formation were not observed with XRD and TEM observation. It was proposed that the addition of SiC and carbon to B4C reduce interface energy during sintering, which results in enhanced grain-boundary diffusion. Thus, the enhanced grain-boundary diffusion and retarded grain growth by SiC improve densification.

  • PDF

Study on Synthesis and Mechanical Properties of (B.Si)C Composite by Self Propagating High Temperature Synthesis Chemical Furnace (SHS 화학로에 의한 (B.Si)C 복합체의 합성 및 기계적 특성에 관한 연구)

  • 이형복;조덕호;이재원
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.413-418
    • /
    • 1995
  • The (B.Si)C composite was prepared form the mixture of metal boron, silicon, and carbon powders in Ar atmosphere by Self-propagating High-temperature Synthesis Chemical Furnace. The characterization of synthesized power and sintered body were investigated. The microstructure of sintered body suggested that SiC boundary was made between B4C grains. The most excellent mechanical properties, the relative density of 95% oftheoretical value, 3 point flexural strength of 360MPa, and fracture toughness of 3.6MN/m3/2 could be obtained in 80wt% B4C-20 wt% SiC composite were obtained.

  • PDF

A Tribological Study of SiC-Steel Couples (탄화규소-강 미끄럼에서의 마모특성)

  • 장복기;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.7-12
    • /
    • 1997
  • The wear behavior of SiC in SiC-steel sliding couple was investigated under various wear test conditions, such as solid state sliding - dry and wet air atmosphere - or lubricated sliding, sliding velocity and at-mosphere temperature. The effect of SiC fabrication process on the SiC wear rate was also studied under varying sliding velocities. Humidity of air plays a lubricating role in the solid state sliding, while the wear behavior is largely influenced by the sliding velocity, especially if the atmosphere is extremely dry. The fa-brication process of SiC and the surface roughness result in different wear rate depending on the magnitude of sliding velocity. High temperature is, among others, the most deteriorating factor of wear, thus being strongly wear-accelerating even under boundary lubrication.

  • PDF

Effect of Change of Grain-Boundary Phases on the Fracture Toughness of Silicon Nitride Ceramics (입계상 변화가 질화규소의 요업체의 파괴인성에 미치는 영향)

  • Lee, Sang-Hun;Park, Hui-Dong;Lee, Jae-Do;Kim, Do-Yeon
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.699-705
    • /
    • 1995
  • Effect of the grain boundary phases in Si$_3$N$_4$ ceramics on the fracture tonghness has been investigated. The Si$_3$N$_4$-Y$_2$O$_3$-SiO$_2$, (YS) and Si$_3$N$_4$-Y$_2$O$_3$-Al$_2$O$_3$(YA) systems were Can/HIP treated at 1750$^{\circ}C$ and then heat-treated at 1800∼2000$^{\circ}C$. The fracture toughness of the YA system, the grain boundary phase was only glass phase after heat-treatement, was increased. That of the YS system, however, the grain boundary phase was changed from crystalline and glass to glass phase after the heat -treatement above 1900$^{\circ}C$, was abruptly decreased. The reason of the sudden drop of the fracture toughness of the YS system was believed that the change of the grain boundary phases from crystalline and glass to glass phase effected un the fracture behavior.

  • PDF

Impact behavior of including the boundary between A356/SiCw and Al alloy (Al alloy와의 경계면을 포함한 A356/SiCw의 충격거동)

  • 조종인;남현욱;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.97-100
    • /
    • 2002
  • In this research, the impact behavior of the boundary between MMC-reinforced SiC whisker and Al alloy were studied. It is known that the resultant of the interfacial reaction between SiC whisker and Al alloy has brittle and low toughness property. In this paper, impact behavior of graded MMC & Al alloy shows the interfacial opening at the boundary. Generally this phenomenon is generated by thermal residual stress, brittle interfacial reaction resultant and difference of the deflection. So, these results may be interpreted as a macroscopic method of measuring the interfacial strength between matrix and reinforcement

  • PDF

Change of high temperature strength of $Si_{3}N_{4}/SiC$ nanocomposites with sintering additives (소결조제에 따른 $Si_{3}N_{4}/SiC$ 초미립복합재료의 고온강도변화)

  • 황광택;김창삼;정덕수;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.558-563
    • /
    • 1996
  • Fracture strength of $Si_{3}N_{4}/20$ vol% SiC nanocomposites with fifferent sintering additives was measured. Strength of nanocomposites with 6 wt% $Y_{2}O_{3}$ and 2 wt% $Al_{2}O_{3}$ as sintering additives was higher at room temperature but significant strength degradation at elevated temperature was occured due to the softening of grain boundary phase. Fracture strength of 8 wt% $Y_{2}O_{3}$ doped sample was higher than that of $Al_{2}O_{3}$ added sample at $1400^{\circ}C$. The retention of high temperature strength in 8 wt% $Y_{2}O_{3}$ doped sample can be attributed to high softening temperature and crystallization of grain boundary glassy phase.

  • PDF

Reliability Improvement of Thin Oxide by Double Deposition of Silicon (실리콘의 이중증착에 의한 산화막 신뢰성 향상)

  • 박진성;양권승
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.74-78
    • /
    • 1994
  • Degradation of thin oxide by doped poly-Si and its improvement were studied. The gate oxide can be degraded by phosphorous in poly-Si doped POCl3. The degradation is increased with the decrement of sheet resistance and poly-Si thickness. Oxide failures of amorphous-Si are higher than those of poly-Si. In-situ double deposition of amorphous-Si, 54$0^{\circ}C$/30 nm, and poly-Si, 6$25^{\circ}C$/220 nm, forms the mismatch structure of grain boundary between amorphous-Si and poly-Si, and suppresses the excess phosphorous on oxide surface by the mismatch structure. The control of phosphorous through grain boundary improves the oxide reliability.

  • PDF

Implementation and Evaluation of Interleaved Boundary Conduction Mode Boost PFC Converter with Wide Band-Gap Switching Devices

  • Jang, Jinhaeng;Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.985-996
    • /
    • 2018
  • The implementation and performance evaluation of an interleaved boundary conduction mode (BCM) boost power factor correction (PFC) converter is presented in this paper by employing three wide band-gap switching devices: a super junction silicon (Si) MOSFET, a silicon carbide (SiC) MOSFET and a gallium nitride (GaN) high electron mobility transistor (HEMT). The practical considerations for adopting wide band-gap switching devices to BCM boost PFC converters are also addressed. These considerations include the gate drive circuit design and the PCB layout technique for the reliable and efficient operation of a GaN HEMT. In this paper it will be shown that the GaN HEMT exhibits the superior switching characteristics and pronounces its merits at high-frequency operations. The efficiency improvement with the GaN HEMT and its application potentials for high power density/low profile BCM boost PFC converters are demonstrated.