• Title/Summary/Keyword: SiC Conversion layer

Search Result 47, Processing Time 0.03 seconds

The Interface Reaction Between Molten Converter Slag and $C_3A(3CaO{\cdot}Al_2O_3)$ Pellet (용융전로(熔融轉爐)슬래그와 $C_3A(3CaO{\cdot}Al_2O_3)$ 펠렛사이의 계면반응(界面反應))

  • Kim, Young-Hwan;Ko, In-Yong
    • Resources Recycling
    • /
    • v.14 no.5 s.67
    • /
    • pp.13-17
    • /
    • 2005
  • As a basic study for recycling molten converter slag as an ordinary portland cement (OPC) by a conversion process, the reaction mechanism and the rate of the formation of $C_4AF$ which is one of the main components of OPC were investigated. The converter slag whose basicity was controlled by adding reagent grade $SiO_2$ was melted and hold for 30 minutes in MgO crucible at $1300^{\circ}C{\sim}1350^{\circ}C$. Then, the sintered CaO pellet heated at the same temperature was dipped into the molten slag and hold for $10{\sim}30$minutes. After the reaction, the crucible was cooled in air and the specimen was cut off to the horizontal direction of the crucible. The dissolution rate of $C_3A$ pellet was measured by the change of radius of the sintered $C_3A$ pellet, and the formed phase of $C_4AF$ was observed by SEM/EDX. As a result, the dissolution rate of $C_3A$ pellet into molten slag was increased from $0.75{\times}10^{-4}(cm/sec)$ at $1300^{\circ}C$ to $1.67{\times}10^{-4}(cm/sec)$ at $1350^{\circ}C$, and the mixed layer of $C_4AF$ and $C_{12}A_7$ was found between slag and $C_3A$ pellet.

Hole Selective Contacts: A Brief Overview

  • Sanyal, Simpy;Dutta, Subhajit;Ju, Minkyu;Mallem, Kumar;Panchanan, Swagata;Cho, Eun-chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • Carrier selective solar cell structure has allured curiosity of photovoltaic researchers due to the use of wide band gap transition metal oxide (TMO). Distinctive p/n-type character, broad range of work functions (2 to 7 eV) and risk free fabrication of TMO has evolved new concept of heterojunction intrinsic thin layer (HIT) solar cell employing carrier selective layers such as $MoO_x$, $WO_x$, $V_2O_5$ and $TiO_2$ replacing the doped a-Si layers on either front side or back side. The p/n-doped hydrogenated amorphous silicon (a-Si:H) layers are deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD), which includes the flammable and toxic boron/phosphorous gas precursors. Due to this, carrier selective TMO is gaining popularity as analternative risk-free material in place of conventional a-Si:H. In this work hole selective materials such as $MoO_x$, $WO_x$ and $V_2O_5$has been investigated. Recently $MoO_x$, $WO_x$ & $V_2O_5$ hetero-structures showed conversion efficiency of 22.5%, 12.6% & 15.7% respectively at temperature below $200^{\circ}C$. In this work a concise review on few important aspects of the hole selective material solar cell such as historical developments, device structure, fabrication, factors effecting cell performance and dependency on temperature has been reported.

Intermediate band solar cells with ZnTe:Cr thin films grown on p-Si substrate by pulsed laser deposition

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.247.1-247.1
    • /
    • 2016
  • Low-cost, high efficiency solar cells are tremendous interests for the realization of a renewable and clean energy source. ZnTe based solar cells have a possibility of high efficiency with formation of an intermediated energy band structure by impurity doping. In this work, ZnO/ZnTe:Cr and ZnO/i-ZnTe structures were fabricated by pulsed laser deposition (PLD) technique. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnTe target, whose density of laser energy was 10 J/cm2. The base pressure of the chamber was kept at approximately $4{\times}10-7Torr$. ZnTe:Cr and i-ZnTe thin films with thickness of 210 nm were grown on p-Si substrate, respectively, and then ZnO thin films with thickness of 150 nm were grown on ZnTe:Cr layer under oxygen partial pressure of 3 mTorr. Growth temperature of all the films was set to $250^{\circ}C$. For fabricating ZnO/i-ZnTe and ZnO/ZnTe:Cr solar cells, indium metal and Ti/Au grid patterns were deposited on back and front side of the solar cells by using thermal evaporator, respectively. From the fabricated ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cell, dark currents were measured by using Keithley 2600. Solar cell parameters were obtained under Air Mass 1.5 Global solar simulator with an irradiation intensity of 100 mW/cm2, and then the photoelectric conversion efficiency values of ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cells were measured at 1.5 % and 0.3 %, respectively.

  • PDF

The Fabrication of Poly-Si Solar Cells for Low Cost Power Utillity (저가 지상전력을 위한 다결정 실리콘 태양전지 제작)

  • Kim, S.S.;Lim, D.G.;Shim, K.S.;Lee, J.H.;Kim, H.W.;Yi, J.
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.3-11
    • /
    • 1997
  • Because grain boundaries in polycrystalline silicon act as potential barriers and recombination centers for the photo-generated charge carriers, these defects degrade conversion effiency of solar cell. To reduce these effects of grain boundaries, we investigated various influencing factors such as thermal treatment, various grid pattern, selective wet etching for grain boundaries, buried contact metallization along grain boundaries, grid on metallic thin film. Pretreatment above $900^{\circ}C$ in $N_2$ atmosphere, gettering by $POCl_3$ and Al treatment for back surface field contributed to obtain a high quality poly-Si. To prevent carrier losses at the grain boundaries, we carried out surface treatment using Schimmel etchant. This etchant delineated grain boundaries of $10{\mu}m$ depth as well as surface texturing effect. A metal AI diffusion into grain boundaries on rear side reduced back surface recombination effects at grain boundaries. A combination of fine grid with finger spacing of 0.4mm and buried electrode along grain boundaries improved short circuit current density of solar cell. A ultra-thin Chromium layer of 20nm with transmittance of 80% reduced series resistance. This paper focused on the grain boundary effect for terrestrial applications of solar cells with low cost, large area, and high efficiency.

  • PDF

High Efficiency Solar Cell(I)-Fabrication and Characteristics of $N^+PP^+$ Cells (고효율 태양전지(I)-$N^+PP^+$ 전지의 제조 및 특성)

  • 강진영;안병태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.3
    • /
    • pp.42-51
    • /
    • 1981
  • Boron was predeposited into p (100) Si wafer at 94$0^{\circ}C$ for 60minutes to make the back surface field. High tempreature diffusion process at 1145$^{\circ}C$ for 3 hours was immediately followed without removing boron glass to obtain high surface concentration Back boron was annealed at 110$0^{\circ}C$ for 40minutes after boron glass was removed. N+ layer was formed by predepositing with POCI3 source at 90$0^{\circ}C$ for 7~15 minutes and annealed at 80$0^{\circ}C$ for 60min1es under dry Of ambient. The triple metal layers were made by evaporating Ti, Pd, Ag in that order onto front and back of diffused wafer to form the front grid and back electrode respectively. Silver was electroplated on front and back to increase the metal thickness form 1~2$\mu$m to 3~4$\mu$m and the metal electrodes are alloyed in N2 /H2 ambient at 55$0^{\circ}C$ and followed by silicon nitride antireflection film deposition process. Under artificial illumination of 100mW/$\textrm{cm}^2$ fabricated N+PP+ cells showed typically the open circuit voltage of 0.59V and short circuit current of 103 mA with fill factor of 0.80 from the whole cell area of 3.36$\textrm{cm}^2$. These numbers can be used to get the actual total area(active area) conversion efficiency of 14.4%(16.2%) which has been improved from the provious N+P cell with 11% total area efficiency by adding P+ back.

  • PDF

A STUDY ON BONE STRENGTH AND THE DEGREE OF CONVERSION OF DENTIN BONDING AGENTS (수종 상아질 접착제의 결합강도와 중합률에 관한 연구)

  • Kim, Byung-Hyun;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.68-93
    • /
    • 1998
  • The physical properties of polymer are greatly influenced by the extent to which a resin cures. The presence of un reacted monomer can, have a plasticizing effect on the polymer, thereby altering the physical and mechanical properties of dentin bonding agent (DBA). If the DBA does not polymerize sufficiently, it will leave a weak bonding layer and lead to lower bond strength. The purpose of this study was to evaluate the shear bond strengths(SBS) and the degree of conversion (DC) of 4 commercialy avilable dentin bonding systems which are composed of 2 multi-bottle systems [Scotchbond Multi-Purpose (SMP), AeliteBond(AB)] and 2 onebottle systems [SingleBond(SB), One-Step(OS)]. For shear bond strength measurement, labial surfaces of freshly extracted bovine incisors were ground with # 600 grit SiC paper to expose dentin. Four different groups of samples were formed, with 10 samples. being made for each of the 4 commercial DBA in each group according to the curing sequences of DBA and overlayer thickness of composites: Group I (standard cure and 1mm thick composites) : The DBA was light cured and the composites of 1mm thickness was applied ; Group II (standard cure and 2mm thick composites) : The DBA was light cured and the composites of 2mm thickness was applied; Group III (simultaneous cure and 1mm thick composites) : The DBA was not light-cured and simultaneously cured with composites of 1mm thickness; Group N (simultaneous cure and 2mm thick composites) : The DBA was. not light-cured and simultaneously cured with composites of 2mm thickness. The SBS was measured immediately after the composites was bonded to the bovine dentin using an Instron machine. The DC of the DBA was examined in a thin film under simulated conditions of the experimental groups according to the curing sequences and overlayer thickness of composites in the SBS test. using a Fourier transform Infrared(FTIR) spectrometer. The following results were obtained from SBS tests and DC measurements 1. In SBS tests, the multi-bottle DBA(SMP, AB) had a generally higher bond strength values than the one bottle DBA(SB, OS). In DC measurements, the one bottle DBA(SB, OS) had a significantly higher DC than the multi-bottle DBA(SMP, AB). 2. In all DBAs except OS, there was no significant difference between the bond strength of group I (standard cure and 1mm thick composites) and that of group III (simultaneous cure and 1mm thick composites). SMP, SB in Group I had a significantly higher DC than those in group III, but AB, OS in group I had a significantly lower DC than those in group III 3. All DBAs in Goup II (standard cure and 2mm thick composites) had significantly higher bond strength and DC than those in Group N (simultaneous cure and 2mm thick composites). 4. In all DBAs, there was no significantly different SBS and DC between Group I and Group II, but all DBAs in Group III had significantly higher SBS and DC than those in Group IV.

  • PDF

The Design and Fabrication of Conversion Layer for Application of Direct-Detection Type Flat Panel Detector (직접 검출형 평판 검출기 적용을 위한 변환층 설계 및 제작)

  • Noh, Si-Cheol;Kang, Sang-Sik;Jung, Bong-Jae;Choi, Il-Hong;Cho, Chang-Hoon;Heo, Ye-Ji;Yoon, Ju-Seon;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.1
    • /
    • pp.73-77
    • /
    • 2012
  • Recently, Interest to the photoconductor, which is used to flat form X-ray detector such as a-Se, $HgI_2$, PbO, CdTe, $PbI_2$ etc. is increasing. In this study, the film layer by using the photoconductive material with particle sedimentation was fabricated and evaluated. The quantization efficiency of the continuous X-ray with the 70 kVp energy bandwidth was analyzed by using the Monte Carlo simulation. With the results, the thickness of film with 64 % quantization efficiency was 180 ${\mu}m$ which is similar to the efficiency of 500 ${\mu}m$ a-Se film. And $HIg_2$ film has the high quantization efficiency of 74 % on 240 ${\mu}m$ thickness. The electrical characteristics of the 239 ${\mu}m$ $Hgl_2$ films produced by particle sedimentation were shown as very low dark current(under 10 $pA/mm^2$), and high sensitivity(19.8 mC/mR-sec) with 1 $V/{\mu}m$ input voltage. The SNR, which is influence to the contrast of X-ray image, was shown highly as 3,125 in low driving voltage on 0.8 $V/{\mu}m$. With the results of this study, the development of the low-cost, high-performance image detector with film could be possible by replacing the film produced by particle sedimentation instead to a-Se detector.