The Interface Reaction Between Molten Converter Slag and $C_3A(3CaO{\cdot}Al_2O_3)$ Pellet

용융전로(熔融轉爐)슬래그와 $C_3A(3CaO{\cdot}Al_2O_3)$ 펠렛사이의 계면반응(界面反應)

  • Kim, Young-Hwan (Department of Metallurgical Engineering, Research Center of Advanced Materials Development, Chonbuk University) ;
  • Ko, In-Yong (Department of Metallurgical Engineering, Research Center of Advanced Materials Development, Chonbuk University)
  • 김영환 (전북대학교 신소재공학부) ;
  • 고인용 (전북대학교 신소재개발연구center)
  • Published : 2005.10.30

Abstract

As a basic study for recycling molten converter slag as an ordinary portland cement (OPC) by a conversion process, the reaction mechanism and the rate of the formation of $C_4AF$ which is one of the main components of OPC were investigated. The converter slag whose basicity was controlled by adding reagent grade $SiO_2$ was melted and hold for 30 minutes in MgO crucible at $1300^{\circ}C{\sim}1350^{\circ}C$. Then, the sintered CaO pellet heated at the same temperature was dipped into the molten slag and hold for $10{\sim}30$minutes. After the reaction, the crucible was cooled in air and the specimen was cut off to the horizontal direction of the crucible. The dissolution rate of $C_3A$ pellet was measured by the change of radius of the sintered $C_3A$ pellet, and the formed phase of $C_4AF$ was observed by SEM/EDX. As a result, the dissolution rate of $C_3A$ pellet into molten slag was increased from $0.75{\times}10^{-4}(cm/sec)$ at $1300^{\circ}C$ to $1.67{\times}10^{-4}(cm/sec)$ at $1350^{\circ}C$, and the mixed layer of $C_4AF$ and $C_{12}A_7$ was found between slag and $C_3A$ pellet.

용융전로슬래그를 일반 포틀랜드 시멘트로 활용하기 위하여, 용융슬래그와 $C_3A(3CaO{\cdot}Al_2O_3)$가 반응하여 시멘트의 구성상인 $C_4AF$가 생성되는 기구와 생성속도를 조사하고자 한다. 전로슬래그에 소정의 $SiO_2$를 첨가하여 MgO도가니에 넣고 $1300^{\circ}C{\sim}1350^{\circ}C$에서 30분간 가열 용해하여 균질화 한 후, 같은 온도로 가열해 둔 소결 $C_3A$펠렛을 투입하여 $10{\sim}30$분간 반응시켰다. 반응 후, 급냉한 시편을 도가니의 직경방향으로 절단해서 펠렛 단면의 $C_3A$직경 변화를 측정하여 $C_3A$의 용해속도를 조사하고, 계면반응 생성상을 SEM/EDX로 관찰하였다. 그 결과 $C_3A$ 펠렛의 슬래그로의 용해속도는 $1300^{\circ}C$에서 $0.75{\times}10^{-4}(cm/sec)$으로부터 $1350^{\circ}C$에서 $1.67{\times}10^{-4}(cm/sec)$으로 증가하였으며, 슬래그와 $C_3A$ 펠렛 사이에 $C_4AF$$C_{12}A_7$의 혼합층이 생성됨을 알 수 있었다.

Keywords

References

  1. US Patent 6,491,751,2002: 'Method for manufacturing cement using a raw material mix including finely ground steel slag', Dec. 10
  2. US Patent 6,277,171, 2001 : 'Method of reducing the iron content of steel slag', Aug. 21
  3. US Patent 5,933,870, 1999 : 'Method of manufacturing pig iron or steel and cement clinker from slag', Aug. 31
  4. Akin Altun I., Ismail Yilmaz, 2002 : 'Study on steel furnace slags with high MgO as additive in portland cement', Cement and Concrete Research, 32, pp. 1247-1249 https://doi.org/10.1016/S0008-8846(02)00763-9
  5. J. Neubauer, and R. Sieber, 1996 : Cement and Concrete Research, 26(1), pp. 77-82 https://doi.org/10.1016/0008-8846(95)00178-6
  6. Ionescu, Denisa V. 1999 : Criteria for the recycling of steel slag as a portland cement additive, University of British Colombia
  7. 이희수, 정윤중, 이형복, 1987 : $Al_2O_3$$Fe_2O_3$가 doping된 CaO-$SiO_2$ 고상반응의 상형성기구, 연세대논문집, pp. 275-285.
  8. D. A. Jerebtsov, and G. G. Mikhailov, 2001 : Phase diagram of CaO-Al_{2}O_{3} System, Ceramic International, 27, pp. 25-28 https://doi.org/10.1016/S0272-8842(00)00037-7
  9. Kou Ueda, 1999 : 'Dissolution Rate of Sintered Alumina in Molten CaO-$SiO_2Al_2O_3$ Slags', J. Japan Inst, Metals, 63(8), pp. 989-993. https://doi.org/10.2320/jinstmet1952.63.8_989
  10. K. Nakashima, H. Naitou, M. Isomoto et al., 1992 : Tetsu-to-Hagane, 78, p. 1674 https://doi.org/10.2355/tetsutohagane1955.78.11_1674
  11. S. Sridar and A. W. Cramb, 2000 : Metall. Mater. Trans. B, 31B, p. 406
  12. S. Taira, K. Nakashima and K. Mori, 1995 : Tetsu-to-Hagane, 81, p. 16 https://doi.org/10.2355/tetsutohagane1955.81.1_16
  13. H. F. W. Taylor, 1997 : Cement Chemistry, 2nd Edition, Thomas Telford, p. 44
  14. Muan, Osborn, 1965 : Phase Equilibria among Oxides in Steelmaking, American Iron and Steel Institute, p. 95