• Title/Summary/Keyword: SiC Ceramics

Search Result 546, Processing Time 0.025 seconds

Biotribological Properties of TZP/Al2O3 Ceramics for Biomechanical Applications

  • Lee, Deuk-Yong;Lee, Se-Jong;Jang, Ju-Woong;Kim, Hak-Kwan;Kim, Dae-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.525-529
    • /
    • 2003
  • Biotribological properties, such as wear rate and friction coefficient, of 3Y-TZP and Low Temperature Degradation (LTD) free materials were investigated via a ball(SiC)-on-plate sliding wear test to evaluate the relationship between wear mechanism and phase transformation. Wear test was conducted with a sliding speed of 0.035 m/s at room temperature and at 25$0^{\circ}C$ in air under a normal load of 49 N, respectively. Although friction coefficient of 3Y-TZP was the lowest due to the fine grain size, the highest wear loss and rate were observed due to the debris of monoclinic grains introduced during sliding and their values increased drastically with raising temperature. However, the biotribological properties of LTD-free materials were insensitive to temperature due to the inertness of the phase transformation, suggesting that they may be applicable to the biomechanical parts.

Etching of Silicon Wafer Using Focused Argon lon Laser Beam (집속 아르곤 이온 레이저 빔을 이용한 실리콘 기판의 식각)

  • Cheong, Jae-Hoon;Lee, Cheon;Park, Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.4
    • /
    • pp.261-268
    • /
    • 1999
  • Laser-induced thermochemical etching has been recognized as a new powerful method for processing a variety of materials, including metals, semiconductors, ceramics, insulators and polymers. This study presents characteristics of direct etching for Si substrate using focused argon ion laser beam in aqueous KOH and $CCl_2F_2$ gas. In order to determine process conditions, we first theoretically investigated the temperature characteristics induced by a CW laser beam with a gaussian intensity distribution on a silicon surface. Major process parameters are laser beam power, beam scan speed and reaction material. We have achieved a very high etch rate up to $434.7\mum/sec$ and a high aspect ratio of about 6. Potential applications of this laser beam etching include prototyping of micro-structures of MEMS(micro electro mechanical systems), repair of devices, and isolation of opto-electric devices.

  • PDF

Study on grinding of the black alumina (블랙 알루미나의 연삭가공에 관한 연구)

  • Park, Jong-Nam;Noh, Seung-Hee;Lee, Dong-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.7-12
    • /
    • 2019
  • Generally, end effectors for automatic robots can use ceramics such as alumina(Al2O3) and silicon carbide(SiC). In this study, black alumina was developed and used in the semiconductor field through powder molding press forming. The black alumina can be mass produced.Alumina and black alumina were ground using a plane grinder to apply to the end effector of an automatic robot. The optimal cutting conditionswere found by analyzing the surface roughness(Ra) of black alumina through grinding. The alumina surface roughness is the feed rate was about 0.72 mm/sec, and the number of revolutions was best at 0.4879 ㎛ at 1700 rpm. In addition, the black alumina surface roughness shows a precision of less than 0.2 ㎛ in most cutting conditions. The feed rate was about 0.72 mm/sec, and the number of revolutions was best at 0.1361 ㎛ at 1900 rpm. The surface roughness of black alumina was better than that of alumina by about 0.35 to 0.47 ㎛.

Hyper-peritectic Al-Ti Alloys as In-Situ composites through Rapid Solidification (급냉응고법에 의한 In-Situ 복합재료로서의 과포정 Al-10wt%Ti 합금(I))

  • Kim, Hye-Seong;Geum, Dong-Hwa;Kim, Geung-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.263-268
    • /
    • 1999
  • In this study, a new concept of aluminum-matrix composites and the possibility of in-situ processing are suggested, and preliminary results on AI- Ti system are presented. Fine powders of AI-lO% Ti were prepared by the gas atomization so that fine $Al_3Ti$ formed into flake shape. A 25v/o $Al_3Ti/Al$ composite sample was made by the pow­d er metallurgy process involving hot extrusion. Microstructure and mechanical behavior both at room temperature and high temperatures were analysed by OM, SEM, TEM and tension test. Microstructural characteristics and mechanical properties of the composites exhibited similar behavior to those of $SiC_w/2124$ composites. Merits and drawbacks of the $Al_3Ti/Al$ composites are discussed together with a possibility of further improvement.

  • PDF

Sintered body characteristics of LAS by addition of CaCO3 and ZrO2 using a solid-state reaction (고상반응법을 이용한 LAS계의 CaCO3와 ZrO2 첨가에 따른 소결체 특성 연구)

  • Kim, Sang-Hun;Kang, Eun-Tae;Kim, Ung-Soo;Hwang, Kwang-Taek;Cho, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.5
    • /
    • pp.218-224
    • /
    • 2011
  • LAS ($Li_2O-Al_2O_3-SiO_2$) ceramics were sintered by a solid-state reaction. $CaCO_3$ and $ZrO_2$ were added to the ${\beta}$-spodumene ($Li_2O-Al_2O_3-4SiO_2$) composition of the LAS system for enhancement of sintering behavior and mechanical strength, respectively. We have investigated the sintering characteristics, microstructures, mechanical properties and thermal expansion characteristics according to the change of the amount of additive and sintering temperature of the ${\beta}$-spodumene. At 0.1 mol% $CaCO_3$, the densification of ${\beta}$-spodumene was significantly improved. At 0.04 mol% $ZrO_2$, the strength of ${\beta}$-spodumene was also improved. For all the selected all compositions, the thermal expansion coefficient was measured by a dilatometer, which revealed 1.2 to $1.7{\times}10^6/^{\circ}C$.

Substrate tempperature dependence of crystalline Y2O3 films grown by Ionized Cluster Beam Deposition

  • Cho, M.H.;Whangbo, S.W.;Seo, J.G.;Choi, S.C.;Cho, S.J.;Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.87-89
    • /
    • 1998
  • The Y2O3 films on Si(111) was grown by ionized cluster beam depposition (ICBD) in ultrahigh-vacuum (UHV). The acceleration voltage and oxygen ppartial ppressure were fixed at 5 kV and 2$\times$10-5 Torr resppectively. The substrate tempperature was varied from 10$0^{\circ}C$ to $600^{\circ}C$ in order to find the deppendence of crystallinity of Y2O3 films on the substrate tempperature. The crystallinity of the films with the substrate tempperature studied using x-ray diffraction (XRD) and Rutherford backscattering sppectroscoppy (RES). Surface crystallinity and surface morpphology of the films were also investigated using the reflection high-energy electron diffraction (RHEED) and atomic force microscoppe (AFM) resppectively. The films grown at the substrate tempperature below 50$0^{\circ}C$showed the ppoly-crystalline structure of oxygen deficiency. On the contrary the single-crystalline structure was obtained at the substrate tempperature over 50$0^{\circ}C$ and the stochimetry was gradually matched as increasing the substrate tempperature. The surface morpphology showed the increase of the surface roughness as the substrate tempperature was increased upp to 50$0^{\circ}C$ The crystallinity of the film was not good and the minimum channeling yield $\chi$min was measured at 0.91 The stochiometric and high crystallinine film (surface $\chi$min=0.25) was obtained as the substrate tempperature increased upp to 60 $0^{\circ}C$ which indicate the tempperature was sufficient to migrate the depposited atom.

  • PDF

Mechanical Properties of Zirconia Reinforced Glass-Ceramic (지르코니아 강화형 Glass-Ceramic의 기계적 성질)

  • Park, Eun-Eui;Dong, Jin-Keun;Lee, Hae-Hyoung;Song, Ki-Chang;Oh, Sang-Chun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.3
    • /
    • pp.199-204
    • /
    • 2001
  • This study was to investigate the reused possibility of zirconia reinforced glass-ceramic(IPS Empress Cosmo ceramic) with sprue button in the flexure strength and fracture toughness. 40 disk-shaped ceramic specimens (20 specimens: as-pressed material; 20 specimens: reused material) with approximately 1.7 mm thickness and 15 mm diameter were prepared by "lost wax" technique. The remnants(sprue buttons) were used for repressing. The surface treatments for the discs were gradually abraded with 320, 800, 1200, and 2000 grit SiC sandpaper. The specimens were evaluated their flexure strength with the biaxial flexure jig(ball-on-three balls) and their fracture toughness with Vickers Indentation-microfracture test. The Weibull moduli were calculated for biaxial flexural strength. The mean flexure strength and fracture toughness of each group were $122.2{\pm}18.3MPa$, $1.00{\pm}0.09MPa{\cdot}m^{0.5}$ (as-pressed ceramics), and $122.2{\pm}20.3MPa$, $1.01{\pm}0.10MPa{\cdot}m^{0.5}$ (reused ceramics). There were no significant differences in the strength and the fracture toughness between the as-pressed and the reused IPS Empress Cosmo ceramic (P>0.05). This implied zirconia reinforced glass-ceramic(IPS Empress Cosmo ceramic) could be used one more time by reusing of sprue button in the flexure strength and fracture toughness.

  • PDF

Physical characteristics of ceramic/glass-polymer based CAD/CAM materials: Effect of finishing and polishing techniques

  • Ekici, Mugem Asli;Egilmez, Ferhan;Cekic-Nagas, Isil;Ergun, Gulfem
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.128-137
    • /
    • 2019
  • PURPOSE. The aim of this study was to compare the effect of different finishing and polishing techniques on water absorption, water solubility, and microhardness of ceramic or glass-polymer based computer-aided design and computer-aided manufacturing (CAD/CAM) materials following thermocycling. MATERIALS AND METHODS. 150 disc-shaped specimens were prepared from three different hybrid materials and divided into five subgroups according to the applied surface polishing techniques. All specimens were subjected up to #4000 grit SiC paper grinding. No additional polishing has been done to the control group (Group I). Other polishing procedures were as follows: Group II: two-stage diamond impregnated polishing discs; Group III: yellow colored rubber based silicone discs; Group IV: diamond polishing paste; and Group V: Aluminum oxide polishing discs. Subsequently, 5000-cycles of thermocycling were applied. The analyses were conducted after 24 hours, 7 days, and 30 days of water immersion. Water absorption and water solubility results were analyzed by two-way ANOVA and Tukey post-hoc tests. Besides, microhardness data were compared by Kruskal-Wallis and MannWhitney U tests (P<.05). RESULTS. Surface polishing procedures had significant effects on water absorption and solubility and surface microhardness of resin ceramics (P<.05). Group IV exhibited the lowest water absorption and the highest microhardness values (P<.05). Immersion periods had no effect on the microhardness of hybrid ceramic materials (P>.05). CONCLUSION. Surface finishing and polishing procedures might negatively affect physical properties of hybrid ceramic materials. Nevertheless, immersion periods do not affect the microhardness of the materials. Final polishing by using diamond polishing paste can be recommended for all CAD/CAM materials.

Low Temperature Sintering of PNN-PZT Ceramics and Its Electrical Properties (PNN-PZT 세라믹스의 저온 소결 및 전기적 특성 평가)

  • Lee, Myung-Woo;Kim, Sung-Jin;Yoon, Man-Soon;Ryu, Sung-Lim;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1077-1082
    • /
    • 2008
  • To fabricate a multi-layered piezoelectrics/electrodes structure, the piezoelectrics should be sintered at the temperature lower than $950^{\circ}C$ to use the silver electrode, which is cheaper than the electrodes containing noble metals such as Pd and Pt. Therefore, in this study, we modified the composition of $Pb(Zr,Ti)O_3$-based material as $(Pb_{0.98}Cd_{0.02})(Ni_{1/3}Nb_{2/3})_{0.25}Zr_{0.35}Ti_{0.4}O_3$ to lower the sintering temperature and to improve the piezoelectric properties. Small amount of $MnCO_3$, $SiO_2$, and $Pb_3O_4$ were also added to lower the sintering temperature of the ceramic. The prepared raw powders were mixed by using a ball mill for 24 hours. And then the mixed powders were calcinated for 2 hours at $800^{\circ}C$. The calcinated powders were again crushed with the ball mill for 72 hours. The final powders were pressed for making the shape of ${\emptyset}15\;mm$ disk. The disk-type samples were sintered at temperature range of $850{\sim}950^{\circ}C$. The crystal phases of the sintered specimens were perovskite structure without secondary phases. All of the measured electrical properties such as electromechanical coupling coefficients ($k_p$), mechanical quality factors ($Q_m$), and piezoelectric charge constants ($d_{33}$) were decreased with decreasing the sintering temperatures. The electrical properties measured at the sample sintered at $950^{\circ}C$ were 54% of $k_p$, 503 of $Q_m$, and 390 pC/N of $d_{33}$, respectively. These properties were considered to be fairly good for the application of multi-layered piezoelectric generators or actuators.

Physical properties of $PbZrO_3-PbTiO_3-Pb(Ni_{1/3}Nb_{2/3})O_3$ thin films by sol-gel method (Sol-gel법에 의한 $PbZrO_3-PbTiO_3-Pb(Ni_{1/3}Nb_{2/3})O_3$박막의 물리적 특성)

  • 임무열;구경완;김성일;유영각
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.991-1000
    • /
    • 1996
  • PbTiO$_{3}$-PbZrO$_{3}$-Pb(Ni$_{1}$3/Nb$_{2}$3/O$_{3}$) (PZT-PNN) thin films were prepared from corresponding metal organics partially stabilized with diethanolamine by the sol-gel spin coating method. Each mol ratio of PT:PZ:PNN solutions were #1(50:40:10), #2(50:30:20), #3(45:35:20), #4(40:40:20), #5(40:50:10), #6(35:45:20) and #7(30:50:20) respectively. The spin-coated PZT-PNN films were heat-treated at 350.deg. C for decomposition of residual organics, and were sintered from 450.deg. C to 750.deg. C for crystallization. The substrates, such as Pt and Pt/TiN/Ti/TiN/Si were used for the spin coating of PZT PNN films. The perovskite phase was observed in the PZT-PNN films heat-treated at 500.deg. C. The crystalline of the PZT-PNN films was optimized at the sintering of 700.deg. C. By the result of AES analysis, It is confirmed that the films of TiN/Ti/TiN was a good diffusion barrier and that co-diffusion into the each films was not observed.

  • PDF