• Title/Summary/Keyword: SiC 입자

Search Result 492, Processing Time 0.042 seconds

Settling of SiC Particlesin the Al-Si/${SiC}_{p}$ Composite Melts (Al-Si/$\{SiC}_{p}$ 복합재료 용탕에서 SiC 입자의 침강)

  • Kim, Jong-Chan;Gwon, Hyeok-Mu
    • Korean Journal of Materials Research
    • /
    • v.7 no.2
    • /
    • pp.145-151
    • /
    • 1997
  • Remelting of $A-Si/SiC_{p}$ composites followed by isothermal holding and solidification, leads ro the settling of Sic particles to the bottom of the mold. With the isothermal holding time for molten $A-Si/SiC_{p}$ composites. the particle free zone increases rapidly up to approximately first 30 minutes of the holding time. Experimental resulls of the particle settling confirm that the larger SIC particles sink faster tlun the sniiller particles. An increase in volume fraction of Sic particles decreases the setrling velocity of the particles.

  • PDF

Improvement of Mechanical and Interfacial Properties of Carbon Fiber/Epoxy Composites by Adding Nano SiC Fillers (나노 SiC 입자의 형상에 따른 탄소섬유 강화 에폭시 복합재료의 기계적 및 계면 물성 변화 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Kim, Je-Jun;Jang, Key-Wook;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.14 no.2
    • /
    • pp.75-81
    • /
    • 2013
  • Epoxy matrix based composites were fabricated by adding SiC nano fillers. The interfacial properties of composites were varied with different shapes of SiC nano fillers. To investigate the shape effects on the interfacial properties, beta and whisker type SiC nano fillers were used for this evaluation. The dispersion states of nano SiC-epoxy nanocomposites were evaluated by capacitance measurements. FE-SEM was used to observe the fracture surface of different structures of SiC-epoxy nanocomposites and to investigate for reinforcement effect. Interfacial properties between carbon fiber and SiC-epoxy nanocomposites were also evaluated by ILSS (interlaminar shear strength) and IFSS (interfacial shear strength) tests. The interfacial adhesion of beta type nanocomposites was better than whisker type.

Effects of SiC Whisker and Particle on Mechanical Properties and Microstructure of Alumina Composites (알루미나 복합재료의 기계적 성질과 미세조직에 미치는 SiC 휘스커 및 입자 첨가의 영향)

  • 이영규;김준규;조원승;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.9
    • /
    • pp.864-870
    • /
    • 2000
  • 알루미나 단미의 기계적 성질을 향상시키고자, 185$0^{\circ}C$에서 1시간 동안 열간 가압소결에 의하여 SiC 입자 및 SiC 휘스커를 단독으로 혹은 동시에 첨가한 알루미나 복합재료를 제조하여 기계적 성질과 미세조직을 조사하였다. 20vol%의 SiC 입자 혹은 휘스커 첨가에 의하여, 알루미나 복합재료의 강도는 단미의 360 MPa에서 각각 640 MPa, 650 Mpa로 향상되었다. 20vol%의 SiC 입자 혹은 휘스커를 첨가한 복합재료의 파괴인성은 각각 3.5 MPa.m$^{1}$2/, 5.5 MPa.m$^{1}$2/를 나타내었다. 20vol%의 SiC 휘스커와 2vol%의 SiC 입자를 동시 첨가한 다중강화 복합재료의 강도와 파괴인성은 각각 790 MPa, 5.0 MPa.m$^{1}$2/ 로 증가하였다. 이와 같이 알루미나 단미에 비해 강도 및 파괴인성이 향상된 것은 입자에 의한 결정립 미세화 효과와 휘스커에 의한 균열편향, pull-out의 영향으로 생각된다.

  • PDF

R-Curve Behavior and Mechanical Properties of Al2O3 Composites Containing SiC and TiC Particles (SiC와 TiC 입자를 함유하는 Al2O3 입자복합체의 균열저항거동과 기계적 성질)

  • Na, Sang-Woong;Lee, Jae-Hyung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.413-419
    • /
    • 2002
  • Particulate composites of $Al_2O_3$/TiC/SiC, $Al_2O_3$/TiC and $Al_2O_3$/SiC have been fabricated by hot pressing and their R-curve behaviors and mechanical properties were investigated. $Al_2O_3$ containing 30 vol% TiC particles showed higher toughness by 8% than that for monolithic alumina and its fracture strength was increased significantly by approximately 30%. On the other hand, the addition of 30 vol% SiC of $3{\mu}m$ in $Al_2O_3$ decreased the fracture strength slightly but induced a rising R-curve behavior owing to the strong crack bridging of SiC particles. In case of $Al_2O_3$/TiC/SiC, arising R-curve behavior was also observed and the fracture toughness reached 6.6 MPa${\cdot}\sqrt{m}$ at the crack length of $1000{\mu}m$, which was lower than that of $Al_2O_3$/SiC, however, while the fracture strength was higher by about 20%. The fracture toughness seemed to be decreased as smaller TiC particles roughened the SiC interface and pullout of the SiC particles for crack bridging became less active.

SiC/SiNx 복합층을 열처리에 의하여 형성된 SiC 나노입자의 광학적 성질

  • Park, Hun-Min;O, Do-Hyeon;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.393-393
    • /
    • 2013
  • 나노입자를 포함하는 합성물은 전자소자와 광전소자의 응용 가능성 때문에 많은 연구가 진행되고 있다. 복합층을 사용한 소자의 전기적 성질에 대한 연구는 많이 진행되었으나, SiC/SiNx 다층 복합층 소자에 대한 광학적 특성에 대한 연구는 상대적으로 미흡하다. 본 연구는 SiC/SiNx 다층 복합층을 사용하여 스퍼터링 방법으로 형성하고 열처리를 사용하여 복합층의 미세구조와 광학적 특성을 조사하였다. SiNx층을 p-형 Si 기판 위에 성장한 후 SiC층을 형성하였다. 3번의 주기적인 성장으로 다층구조를 형성하고, 30분 동안 열처리 하였다. 투과전자현미경상은 SiC/SiNx 복합층에 SiC 나노입자가 형성한 것을 확인하였다. 광류미네센스 스펙트럼 결과는 형성한 SiC/SiNx 복합층을 열처리할 때 SiC층에서 나타나는 주된 피크 위치가 변위되는 것을 보였다. 광류 미네센스 스펙트럼 결과에서 나타난 주된 피크가 열치리에 따라 변화하는 원인을 규명하였다.

  • PDF

A New Mixing Method of SiC Nanoparticle Reinforced Epoxy Composites with Large Concentration of SiC Nanoparticle (대용량 SiC 나노입자 강화 에폭시 복합재료의 새로운 분산방법)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.223-229
    • /
    • 2016
  • SiC nanoparticles were used to increase flexural properties of polymer matrix. This study was to manufacture huge concentration SiC nanoparticle/epoxy composites and to evaluate the dispersion. During mixing SiC nanoparticle and epoxy, 20 wt% SiC nanoparticle in total composites was used with both stirrer and sonication equipment together. Mixing speed and dispersion were improved with the method by using both stirrer and sonication equipment at the same time via mechanical test and FE-SEM. Based on the results, modeling of SiC nanoparticle dispersion could be established. Ultimately, unidirectional carbon fiber reinforced composites was manufactured using 20 wt% SiC nanoparticle/epoxy. Mechanical property of CFRP using dual stirrer and sonication mixing method was better than composites by single sonication mixing method.

Fabrication of Porous SiC Ceramics by Partial Sintering and their Properties (부분소결공정에 의한 다공질 탄화규소 세라믹스의 제조 및 특성)

  • 김신한;김영욱;윤중열;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.541-547
    • /
    • 2004
  • Addition of large particles restrains densification by small particles in mixed particle systems. In the present study, large SiC whiskers or particles were introduced into small particles for restraining densification and the mixtures were sintered using yttrium aluminum garnet (Y$_3$A1$\sub$5/O$\sub$12/, YAG) as a sintering additive. By controlling the content of large SiC whiskers or particles and the applied pressure during sintering, porous SiC ceramics, with a porosity ranging from 0.3% to 39%, were fabricated. Porosity increased with increasing the content of restraining materials. SiC whiskers were more effective than large SiC partcles for restraining densification. Permeability of the porous SiC ceramics increased with increasing the porosity. Flexural strength decreased with increasing porosity. A noticeable increase in strain to failure was observed in the porous ceramics with a porosity ranging from 18% to 39%.

Mechanical Properties of SiC-$Si_3$$N_4$Composites Containing $\beta$-$Si_3$$N_4$Seeds ($\beta$-$Si_3$$N_4$종자입자 첨가 SiC-$Si_3$$N_4$복합재료의 기계적 특성)

  • 이영일;김영욱;최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.22-27
    • /
    • 2001
  • $\beta$-Si$_3$N$_4$종자입자 첨가가 소결조제로 Y-Mg-Si-Al-O-N계 oxynitride glass를 사용하여 일축가압 소결을 행한 SiC-Si$_3$N$_4$복합재료의 미세구조와 기계적 특성에 미치는 영향을 고찰하였다. 길게 자란 $\beta$-Si$_3$N$_4$입자들과 등방성의 $\beta$-SiC 입자들이 균일하게 분포된 미세구조를 얻었다. $\beta$-Si$_3$N$_4$종자입자 함량이 증가함에 따라 SiC-Si$_3$N$_4$복합재료의 강도와 파괴인성이 증가하였고, 이는 복합화에 기인하는 결함크기의 감소와 길게 자란 $\beta$-Si$_3$N$_4$입자에 의한 균열가교 및 균열회절 등에 기인하였다. SiC-70 wt% Si$_3$N$_4$복합재료의 대표적인 강도와 파괴인성은 각각 770 MPa과 6.2 MPa.m$^{1}$2/ 이었다.

  • PDF

Characteristics of Heat Absorption by Gas in a Directly-irradiated Fluidized Bed Particle Receiver (태양열 유동층 흡열기의 기체 열흡수 특성)

  • Park, Sae Han;Kim, Sung Won
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.239-246
    • /
    • 2021
  • Characteristics of hydrodynamics and heat absorption by gas in a directly-irradiated fluidized bed particle receiver (50 mm-ID X 150 mm high) of SiC particles have been determined. Solid holdups of SiC particles show almost constant values with increasing gas velocity. Fine SiC particles (SiC II; dp=52 ㎛, ρs=2992 kg/㎥) showed low values of relative standard deviation of pressure drop across bed but high solids holdups in the freeboard region compared to coarse SiC particles (SiC I; dp=123 ㎛, ρs=3015 kg/㎥). The SiC II exhibited higher values of temperature difference normalized by irradiance due to the effect of additional solar heat absorption and heat transfer to the gas by the particles entrained in the freeboard region in addition to the efficient thermal diffusion of the solar heat received at bed surface. Heat absorption rate and efficiency increased with increasing the gas velocity and fluidization number. The SiC II showed maximum heat absorption rate of 17.8 W and thermal efficiency of 14.8%, which are about 33% higher than those of SiC I within the experimental gas velocity range.

Mechanical Properties and Wear Performance of the Al7075 Composites Reinforced with Bimodal Sized SiC Particles (이종입자 강화 SiC/Al7075 금속복합재료의 압축특성 및 마모특성 연구)

  • Lee, Donghyun;Cho, Seungchan;Kim, Yangdo;Lee, Sang-Kwan;Lee, Sang-Bok;Jo, Ilguk
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.310-315
    • /
    • 2017
  • In this study, we have investigated microstructure, mechanical properties and wear characteristic of aluminum metal matrix composites with a high volume fraction and uniformly dispersed SiC particles which produced by a liquid pressing process. The volume fraction of bimodal SiC/Al7075 composite was 12% higher than that of the monomodal SiC/Al7075 composite and a compressive strength is increased about 200 MPa. As a result of the abrasion test, the wear width and depth of the bimodal SiC/Al7075 composite were $285.1{\mu}m$ and $0.45{\mu}m$, respectively. The coefficient of friction of bimodal SiC/Al7075 was 0.16.