DOI QR코드

DOI QR Code

Characteristics of Heat Absorption by Gas in a Directly-irradiated Fluidized Bed Particle Receiver

태양열 유동층 흡열기의 기체 열흡수 특성

  • Park, Sae Han (School of Chemical and Energy Engineering, Korea National University of Transportation) ;
  • Kim, Sung Won (School of Chemical and Energy Engineering, Korea National University of Transportation)
  • 박새한 (한국교통대학교 응용화학에너지공학부) ;
  • 김성원 (한국교통대학교 응용화학에너지공학부)
  • Received : 2021.01.20
  • Accepted : 2021.02.08
  • Published : 2021.05.01

Abstract

Characteristics of hydrodynamics and heat absorption by gas in a directly-irradiated fluidized bed particle receiver (50 mm-ID X 150 mm high) of SiC particles have been determined. Solid holdups of SiC particles show almost constant values with increasing gas velocity. Fine SiC particles (SiC II; dp=52 ㎛, ρs=2992 kg/㎥) showed low values of relative standard deviation of pressure drop across bed but high solids holdups in the freeboard region compared to coarse SiC particles (SiC I; dp=123 ㎛, ρs=3015 kg/㎥). The SiC II exhibited higher values of temperature difference normalized by irradiance due to the effect of additional solar heat absorption and heat transfer to the gas by the particles entrained in the freeboard region in addition to the efficient thermal diffusion of the solar heat received at bed surface. Heat absorption rate and efficiency increased with increasing the gas velocity and fluidization number. The SiC II showed maximum heat absorption rate of 17.8 W and thermal efficiency of 14.8%, which are about 33% higher than those of SiC I within the experimental gas velocity range.

태양열 SiC 입자 유동층 흡열기(내경 50 mm, 높이 150 mm)에서 수력학적 특성 및 기체 열흡수 특성이 연구되었다. 측정 구간 내에서, 기체 속도가 증가할수록 유동층 내 고체체류량은 일정하였으나, 유사한 기체속도 구간(Ug = 0.03-0.05 m/s)에서 미세한 SiC 입자(SiC II; dp=52 ㎛, ρs=2992 kg/㎥)는 굵은 SiC 입자(SiC I; dp=123 ㎛, ρs=3015 kg/㎥) 대비 유동층 내 압력요동의 상대 표준편차는 낮았으며, 프리보드 내 고체체류량은 상대적으로 높은 값을 나타내었다. 미세한 SiC II 입자는 굵은 SiC I 입자 대비 일사량의 변화에 관계없이 상대적으로 높은 일사량 당 흡열기 입출구 온도차를 보였고, 이는 상대적으로 균일한 유동층 내 입자 거동에 의한 층 표면 수용 열의 효율적인 열확산 효과에 더하여, 프리보드 영역에서 비산된 입자에 의한 추가적인 태양열 흡수 및 기체로의 열전달 효과에 기인한다. 본 시스템에서 기체속도 및 유동화 수가 증가할수록 열 흡수 속도 및 열효율은 증가하였다. SiC II 입자는 최대 17.8 W의 열 흡수 속도와 14.8%의 열효율을 보였고, 이는 SiC I 입자 대비 약 33% 높은 값을 나타내었다.

Keywords

References

  1. Hwang, H., Mun, J. and Kim, J., "Economic Benefits of Integration of Supplementary Biopower and Energy Storage Systems in a Solar-Wind Hybrid System," Korean J. Chem. Res., 58, 381-389(2020).
  2. Miller, J., Nwe, K., Youn, Y., Hwang, K., Choi, C., Mola, P. W. and Jin, S., "Development of a Low Environmental Impact, Porous Solar Absorber Coating Utilizing Binary/ternary Solvent Blends for CSP Systems," Korean J. Chem. Eng., 36, 996-1003 (2019). https://doi.org/10.1007/s11814-019-0276-0
  3. Farjana, S. H., Huda, N., Mahmud, M. P., and Saidur, R., "Solar Process Heat in Industrial Systems-A Global Review," Renewable and Sustainable Energy Reviews, 82, 2270-2286(2018). https://doi.org/10.1016/j.rser.2017.08.065
  4. Jia, T., Dai, Y., and Wang, R. "Refining Energy Sources in Winemaking Industry by Using Solar Energy as Alternatives for Fossil Fuels, A Review and Perspective," Renewable and Sustainable Energy Reviews, 88, 278-296(2018). https://doi.org/10.1016/j.rser.2018.02.008
  5. Li, S., Kong, W., Zhang, H., Sabatier, F., Ansart, R., Flamant, G., and Baeyens, J., "The Fluidized Bed Air Heat Exchanger in a Hybrid Brayton-cycle Solar Power Plant," In AIP Conference Proceedings, 2126, July, Taiwan, 140002(2019).
  6. Tregambi, C., Chirone, R., Montagnaro, F., Salatino, P., and Solimene, R., "Heat Transfer in Directly Irradiated Fluidized Beds," Sol. Energy, 129, 85-100(2016). https://doi.org/10.1016/j.solener.2016.01.057
  7. Flamant, G., "Theoretical and Experimental Study of Radiant Heat Transfer in a Solar Fluidized-bed Receiver," AIChE Journal, 28, 529-535(1982). https://doi.org/10.1002/aic.690280402
  8. Gokon, N., Takahashi, S., Yamamoto, H., and Kodama, T., "Thermochemical Two-step Water-splitting Reactor with Internally Circulating Fluidized Bed for Thermal Reduction of Ferrite Particles," Int. J. Hydrogen Energy, 33, 2189-2199(2008). https://doi.org/10.1016/j.ijhydene.2008.02.044
  9. Matubara, K., Kazuma, Y., Sakurai, A., Kodama, T., Gokon, N., Choi, H. S., and Nagase, Y., "Laboratory Experiment and Simulation of High-temperature Fluidized Bed Air Receiver for Concentrated Solar Power Generation," Journal of the Japan Institute of Energy, 94, 1323-1329(2015). https://doi.org/10.3775/jie.94.1323
  10. Tregambi, C., Montagnaro, F., Salatino, P. and Solimene, R., "Directly Irradiated Fluidized Bed Reactors for Thermochemical Processing and Energy Storage: Application to Calcium Looping," In AIP Conference Proceedings, 1850, June, 090007(2017).
  11. Almendros-Ibanez, J. A., Fernandez-Torrijos, M., Diaz-Heras, M., Belmonte, J. F. and Sobrino, C., "A Review of Solar Thermal Energy Storage in Beds of Particles: Packed and Fluidized Beds," Sol. Energy, 192, 193-237(2019). https://doi.org/10.1016/j.solener.2018.05.047
  12. Ma, Z., Mehos, M., Glatzmaier, G. and Sakadjian, B. B., "Development of a Concentrating Solar Power System Using Fluidizedbed Technology for Thermal Energy Conversion and Solid Particles for Thermal Energy Storage," Energy Procedia, 69, 1349-1359(2015). https://doi.org/10.1016/j.egypro.2015.03.136
  13. Ho, C. K., "Advances in Central Receivers for Concentrating Solar Applications," Solar Energy, 152, 38-56(2017). https://doi.org/10.1016/j.solener.2017.03.048
  14. Calderon, A., Barreneche, C., Palacios, A., Segarra, M., Prieto, C., Rodriguez-Sanchez, A. and Fernandez, A. I., "Review of Solid Particle Materials for Heat Transfer Fluid and Thermal Energy Storage in Solar Thermal Power Plants," Energy Storage, 1, e63(2019).
  15. Koenigsdorff, R. and Kienzle, P., "Results of and Prospects for Research on Direct-absorption Fluidized Bed Solar Receivers," Solar. Energy Materials, 24, 279-283(1991). https://doi.org/10.1016/0165-1633(91)90068-V
  16. Werther, J., Koenigsdorff, R. and Fischer, M., "Use of Circulating Fluidized Bed as Solar Receiver," Preprints of Annual Meeting Society of Chemical Engineers., Japan Sendai, 28-30(1994).
  17. Park, S. H., Yeo, C. E., Lee, M. J. and Kim, S. W., "Effect of Bed Particle Size on Thermal Performance of a Directly-Irradiated Fluidized Bed Gas Heater," Processes, 8, 967(2020). https://doi.org/10.3390/pr8080967
  18. Roberto, B., Ubaldo, C., Stefano, M., Roberto, I., Elisa, S., and Paolo, M., "Graybox and Adaptative Dynamic Neural Network Identification Models to Infer the Steady State Efficiency of Solar Thermal Collectors Starting from the Transient Condition," Sol. Energy., 84, 1027-1046(2010). https://doi.org/10.1016/j.solener.2010.03.011
  19. Kunii, D. and Levenspiel, O., "Fluidization Engineering," 2nd ed., Butterworth-Heinemann(1991).
  20. Bi, H. T., "A Critical Review of the Complex Pressure Fluctuation Phenomenon in Gas-solid Fluidized Beds," Chem. Eng. Sci., 62, 3473-3493(2007). https://doi.org/10.1016/j.ces.2006.12.092
  21. Johnsson, F., Zijerveld, R. C., Schouten, J. V., Van den Bleek, C. M. and Leckner, B., "Characterization of Fluidization Regimes by Time-series Analysis of Pressure Fluctuations," Int. J. Multiphase Flow, 26, 663-715(2000). https://doi.org/10.1016/S0301-9322(99)00028-2
  22. Go, E. S., Kang, S. Y., Seo, S. B., Kim, H. W. and Lee, S. H., "Slug Characteristics in a Bubbling Fluidized Bed Reactor for Polymerization Reaction," Korean J. Chem. Res., 58, 651-657(2020).
  23. Kim, S. W. and Kim, S. D., "Heat Transfer Characteristics in a Pressurized Fluidized Bed of Fine Particles With Immersed Horizontal Tube Bundle," Int. J. Heat Mass Transfer, 64, 269-277 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.045
  24. Kim, S. W., Yeo, C. E. and Lee, D. Y., "Effect of Fines Content on Fluidity of FCC Catalysts for Stable Operation of Fluid Catalytic Cracking Unit," Energies, 12, 293(2019). https://doi.org/10.3390/en12020293
  25. Abrahamsen, A. R. and Geldart, D., "Behaviour of Gas-Fluidized Beds of Fine Powders Part I. Homogeneous Expansion," Powder Technol., 26, 35-46(1980). https://doi.org/10.1016/0032-5910(80)85005-4
  26. Gomez-Garcia, F., Gauthier, D., and Flamant, G., "Design and Performance of a Multistage Fluidised Bed Heat Exchanger for Particle-receiver Solar Power Plants with Storage," Appl. Energy, 190, 510-523(2017). https://doi.org/10.1016/j.apenergy.2016.12.140
  27. Baccoli, R., Frattolillo, A., Mastino, C., Curreli, S., and Ghiani, E., "A Comprehensive Optimization Model for Flat Solar Collector Coupled with a Flat Booster Bottom Reflector Based on An Exact Finite Length Simulation Model," Energy Convers. Manag., 164, 482-507(2018). https://doi.org/10.1016/j.enconman.2018.02.091