• Title/Summary/Keyword: SiC(silicon carbide)

Search Result 554, Processing Time 0.027 seconds

Synthesis of Silicon Carbide Nano-Powder from a Silicon-Organic Precursor by RF Inductive Thermal Plasma (RF 유도 열플라즈마를 이용한 유기 용매로 부터의 탄화규소 나노 분말 합성)

  • Ko, Sang-Min;Koo, Sang-Man;Kim, Jin-Ho;Cho, Woo-Seok;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.523-527
    • /
    • 2012
  • Silicon carbide (SiC) has recently drawn an enormous amount of industrial interest due to its useful mechanical properties, such as its thermal resistance, abrasion resistance and thermal conductivity at high temperatures. In this study, RF thermal plasma (PL-35 Induction Plasma, Tekna CO., Canada) was utilized for the synthesis of high-purity SiC powder from an organic precursor (hexamethyldisilazane, vinyltrimethoxysilane). It was found that the SiC powders obtained by the RF thermal plasma treatment included free carbon and amorphous silica ($SiO_2$). The SiC powders were further purified by a thermal treatment and a HF treatment, resulting in high-purity SiC nano-powder. The particle diameter of the synthesized SiC powder was less than 30 nm. Detailed properties of the microstructure, phase composition, and free carbon content were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), a thermogravimetric (TG) analysis, according to the and Brunauer-Emmett-Teller (BET) specific surface area from N2 isotherms at 77 K.

Influence of Device Parameters Spread on Current Distribution of Paralleled Silicon Carbide MOSFETs

  • Ke, Junji;Zhao, Zhibin;Sun, Peng;Huang, Huazhen;Abuogo, James;Cui, Xiang
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.1054-1067
    • /
    • 2019
  • This paper systematically investigates the influence of device parameters spread on the current distribution of paralleled silicon carbide (SiC) MOSFETs. First, a variation coefficient is introduced and used as the evaluating norm for the parameters spread. Then a sample of 30 SiC MOSFET devices from the same batch of a well-known company is selected and tested under the same conditions as those on datasheet. It is found that there is big difference among parameters spread. Furthermore, comprehensive theoretical and simulation analyses are carried out to study the sensitivity of the current imbalance to variations of the device parameters. Based on the concept of the control variable method, the influence of each device parameter on the steady-state and transient current distributions of paralleled SiC MOSFETs are verified separately by experiments. Finally, some screening suggestions of devices or chips before parallel-connection are provided in terms of different applications and different driver configurations.

Development of 200kW class electric vehicle traction motor driver based on SiC MOSFET (SiC MOSFET기반 200kW급 전기차 구동용 모터드라이버 개발)

  • Yeonwoo, Kim;Sehwan, Kim;Minjae, Kim;Uihyung, Yi;Sungwon, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.671-680
    • /
    • 2022
  • In this paper, A 200kW traction motor driver that covers most of the traction motor specification of commercial electric vehicles (EV) is developed. In order to achieve high efficiency and high power density, a next-generation power semiconductors (Silicon carbide, SiC) are applied instead of power semiconductor(IGBT), which is Si based. Through hardware analysis for optimal use of SiC, expected efficiency and heat dissipation characteristics are obtained. A vector control algorithm for an IPMSM (Interior permanent magnet synchronous motor), which is mostly used in EV(Electric vehicle) traction motor, is implemented using DSP (Digital signal processor). In this paper, a prototype traction motor driver based SiC for EV is designed and manufactured, and its performance is verified through experiments.

Characteristics of Silicon Carbide Nanowires Synthesized on Porous Body by Carbothermal Reduction

  • Kim, Jung-Hun;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.285-289
    • /
    • 2018
  • We synthesized silicon carbide (${\beta}-SiC$) nanowires with nano-scale diameter (30 - 400 nm) and micro-scale length ($50-200{\mu}m$) on a porous body using low-grade silica and carbon black powder by carbothermal reduction at $1300-1600^{\circ}C$. The SiC nanowires were formed by vapor-liquid-solid deposition with self-evaporated Fe catalysts in low-grade silica. We investigated the characteristics of the SiC nanowires, which were grown on a porous body with Ar flowing in a vacuum furnace. Their structural, optical, and electrical properties were analyzed with X-ray diffraction (XRD), transmission electron microscopy (TEM), and selective area electron diffraction (SAED). We obtained high-quality SiC single crystalline nanowire without stacking faults that may have uses in industrial applications.

Enhanced Corrosion Resistance of WC-Co with an Ion Beam Mixed Silicon Carbide Coating

  • Yeo, Sun-Mok;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.193-193
    • /
    • 2011
  • Strong adhesion of a silicon carbide (SiC) coating to a WC-Co substrate was achieved through an ion beam mixing technique and the corrosion resistance of the SiC coated WC-Co was investigated by means of a potentiodynamic electrochemical test. In a 1 M NaOH solution, the corrosion current density of SiC-coated WC-Co after heat treatment at 500$^{\circ}C$ was about 50 times lower than that for the as-received WC-Co. In addition, the corrosion resistance systematically increases with increasing the SiC coating thickness. On the other hand, for a 0.5 M H2SO4 solution, the corrosion current density for SiC-coated WC-Co was about 3 times lower than that for the as-received WC-Co. We discuss the physical reasons for the changes in the corrosion current density with the different electrolytes.

  • PDF

Crystal growth of ring-shaped SiC polycrystal via physical vapor transport method (PVT 방법에 의한 링 모양의 SiC 다결정 성장)

  • Park, Jin-Yong;Kim, Jeong-Hui;Kim, Woo-Yeon;Park, Mi-Seon;Jang, Yeon-Suk;Jung, Eun-Jin;Kang, Jin-Ki;Lee, Won-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.163-167
    • /
    • 2020
  • Ring-shaped SiC (Silicon carbide) polycrystals used as an inner material in semiconductor etching equipment was manufactured using the PVT (Physical Vapor Transport) method. A graphite cylinder structure was placed inside the graphite crucible to grow a ring-shaped SiC polycrystal by the PVT method. The crystal polytype of grown crystal were analyzed using a Raman and an UVF (Ultra Violet Fluorescence) analysis. And the microstructure and components of SiC crystal were identified by a SEM (Scanning Electron Microscope) and EDS (Energy Disruptive Spectroscopy) analyses. The grain size and growth rate of SiC polycrystals fabricated by this method was varied with temperature variation in the initial stage of growth process.

Effect of P-Base Region on the Transient Characteristics of 4H-SiC DMOSFETs (P형 우물 영역에 따른 4H-SiC DMOSFETs의 스위칭 특성 분석)

  • Kang, Min-Seok;Ahn, Jung-Jun;Sung, Bum-Sik;Jung, Ji-Hwan;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.352-352
    • /
    • 2010
  • Silicon Carbide (SiC) power device possesses attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation. In general, device design has a significant effect on the switching characteristics. In this paper, we report the effect of the P-base doping concentration ($N_{PBASE}$) on the transient characteristics of 4H-SiC DMOSFETs. By reducing $N_{PBASE}$, switching time also decreases, primarily due to the lowered channel resistance. It is found that improvement of switching speed in 4H-SiC DMOSFETs is essential to reduce the and channel resistance. Therefore, accurate modeling of the operating conditions are essential for the optimization of superior switching performance.

  • PDF

Status of Silicon Carbide as a Semiconductor Device (SiC 반도체 기술현황과 전망)

  • 김은동
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.13-16
    • /
    • 2001
  • 반도체 동작시에 파워 손실을 최소화하는 것은 2000년대의 에너지, 산업전자, 정보통신 산업분야에서의 가장 주요한 요구 사항중의 하나이다. 실리콘계 반도체 소자들은 완전히 새로운 구동기구의 소자가 개발되지 않는 한, 실리콘 재료의 낮은 열 전도율이나 낮은 절연파괴전계와 같은 물리적 특성한계 때문에 이러한 요구를 만족시키는 것이 불가능한 실정이다. 따라서 21세기를 위한 대안으로 고열전도율의 WBG(Wide Band-Gap) 물질 그 중에서도 탄화규소(SiC) 반도체가 제시되고 있다. SiC 반도체는 실리콘에 비하여 밴드 갭(band gap: E$_{g}$)이 높을 뿐만이 아니라 절연파괴강도(E$_{B}$)가 한 자릿수 이상 그리고 전자의 포화 drift 속도, v$_{s}$ 및 열전도도 k가 3배 가량 크다. 따라서 SiC는 고온 동작 내지는 고내압, 대전류, 저손실 반도체를 제작하는데 아주 유리하다. 본고에서는 응용성이 넓고, 단결정 제조가 비교적 용이한 SiC 반도체의 기술현황 에 대하여 살펴보고자 한다.

  • PDF

Heteroepitaxial Growth of Single 3C-SiC Thin Films on Si (100) Substrates Using a Single-Source Precursor of Hexamethyldisilane by APCVD

  • Chung, Gwiy-Sang;Kim, Kang-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.533-537
    • /
    • 2007
  • This paper describes the heteroepitaxial growth of single-crystalline 3C-SiC (cubic silicon carbide) thin films on Si (100) wafers by atmospheric pressure chemical vapor deposition (APCVD) at 1350 oC for micro/nanoelectromechanical system (M/NEMS) applications, in which hexamethyldisilane (HMDS, Si2(CH3)6) was used as a safe organosilane single-source precursor. The HMDS flow rate was 0.5 sccm and the H2 carrier gas flow rate was 2.5 slm. The HMDS flow rate was important in obtaing a mirror-like crystalline surface. The growth rate of the 3C-SiC film in this work was 4.3 μm/h. A 3C-SiC epitaxial film grown on the Si (100) substrate was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Raman scattering, respectively. These results show that the main chemical components of the grown film were single-crystalline 3C-SiC layers. The 3C-SiC film had a very good crystal quality without twins, defects or dislocations, and a very low residual stress.

Strength Properties and Elastic Waves Characteristics of Silicon Carbide with Damage-Healing Ability (손상치유 능력을 가지는 탄화규소의 강도 특성과 탄성파 특성)

  • KIM MI-KYUNG;AHN BYUNG-GUN;KIM JIN-WOOK;PARK IN-DUCK;AHN SEOK-HWAN;NAM KI-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.337-341
    • /
    • 2004
  • Engineering ceramics have superior heat resistance, corrosion resistance, and wear resistance. Consequently, these art significant candidates for hot-section structural components of heat engine and the inner containment of nuclear fusion reactor. Besides, some of them have the ability to heal cracks and great benefit can be anticipated with great benefit the structural engineering field. Especially, law fracture toughness of ceramics supplement with self-healing ability. In the present study, we have been noticed some practically important points for the healing behavior of silicon nitride, alumina, mullite with SiC particle and whisker. The presence of silicon carbide (SiC) in ceramic compound is very important for crack-healing behavior. However, self-healing of SiC has not been investigated well in detail yet. In this study, commercial SiC was selected as sample, which can be anticipated in the excellent crack healing ability. The specimens were produced three-point bending specimen with a critical semi-circular crack of which size that is about $50-700{\mu}m$. Three-point bending test and static fatigue test were performed cracked and healed SiC specimens. A monotonic bending load was applied to cracked specimens by three-point loading at different temperature. The purpose of this paper is to report Strength Properties and Elastic Waves Characteristics of Silicon Carbide with Crack Healing Ability.

  • PDF