• Title/Summary/Keyword: Si-solar cell

Search Result 654, Processing Time 0.023 seconds

Investigations on Microcrystalline Silicon Films for Solar Cell Application

  • Hwang, Hae-Sook;Park, Min-Gyu;Ruh, Hyun;Yu, Hyun-Ung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2909-2912
    • /
    • 2010
  • Hydrogenated microcrystalline silicon (${\mu}c$-Si:H) thin film for solar cells is prepared by plasma-enhanced chemical vapor deposition and physical properties of the ${\mu}c$-Si:H p-layer has been investigated. With respect to stable efficiency, this film is expected to surpass the performance of conventional amorphous silicon based solar cells and very soon be a close competitor to other thin film photovoltaic materials. Silicon in various structural forms has a direct effect on the efficiency of solar cell devices with different electron mobility and photon conversion. A Raman microscope is adopted to study the degree of crystallinity of Si film by analyzing the integrated intensity peaks at 480, 510 and $520\;cm^{-1}$, which corresponds to the amorphous phase (a-Si:H), microcrystalline (${\mu}c$-Si:H) and large crystals (c-Si), respectively. The crystal volume fraction is calculated from the ratio of the crystalline and the amorphous phase. The results are compared with high-resolution transmission electron microscopy (HR-TEM) for the determination of crystallinity factor. Optical properties such as refractive index, extinction coefficient, and band gap are studied with reflectance spectra.

Manufacturing of Ag Nano-particle Ink-jet Printer and the Application into Metal Interconnection Process of Si Solar Cells (Si 태양전지 금속배선 공정을 위한 나노 Ag 잉크젯 프린터 제작 및 응용)

  • Lee, Jung-Tack;Choi, Jae-Ho;Kim, Ki-Wan;Shin, Myoung-Sun;Kim, Keun-Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.73-81
    • /
    • 2011
  • We manufactured the inkjet printing system for the application into the nano Ag finger line interconnection process in Si solar cells. The home-made inkjet printer consists of motion part for XY motion stage with optical table, head part, power and control part in the rack box with pump, and ink supply part for the connection of pump-tube-sub ink tanknozzle. The ink jet printing system has been used to conduct the interconnection process of finger lines on Si solar cell. The nano ink includes the 50 nm-diameter. Ag nano particles and the viscosity is 14.4 cP at $22^{\circ}C$. After processing of inkjet printing on the finger lines of Si solar cell, the nano particles were measured by scanning electron microscope. After the heat treatment at $850^{\circ}C$, the finger lines showed the smooth surface morphology without micropores.

Electrical Properties of Boron and Phosphorus Doped μc-Si:H Films using Inductively Coupled Plasma Chemical Vapor Deposition Method for Solar Cell Applications

  • Jeong, Chae-Hwan;Jeon, Min-Sung;Koichi, Kamisako
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.28-32
    • /
    • 2008
  • Hydrogenated microcrystalline silicon(${\mu}c$-Si:H) films were prepared using inductively coupled plasma chemical vapor deposition(ICP-CVD) method, electrical and optical properties of these films were studied as a function of silane concentration. And then, effect of $PH_3\;and\;B_2H_6$ addition on their electrical properties was also investigated for solar cell application. Characterization of these films from X-ray diffraction revealed that the conductive film exists in microcrystalline phase embedded in an amorphous network. At $PH_3/SiH_4$ gas ratio of $0.9{\times}10^{-3}$, dark conductivity has a maximum value of ${\sim}18.5S/cm$ and optical bandgap also a maximum value of ${\sim}2.39eV$. Boron-doped ${\mu}c$-Si:H films, satisfied with p-layer of solar cell, could be obtained at ${\sim}10^{-2}\;of\;B_2H_6/SiH_4$.

A study on efficiency improvement of poly-Si solar cell using a selective etching along the grain boundaries (결정입계 선택적 식각 기법을 적용한 다결정 규소 태양전지의 효율 향상에 관한 연구)

  • 임동건;이수은;박성현;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.597-600
    • /
    • 1999
  • A solar cell conversion efficiency was degraded by grain boundary effect in polycrystalline silicon To reduce grain boundary effect, we performed a preferential grain boundary etching, POC$_3$ n-type emitter doping, and then ITO film growth on poly- Si. Among the various preferential etchants, Schimmel etch solution exhibited the best result having grain boundary etch depth higher than 10 ${\mu}{\textrm}{m}$. RF magnetron sputter grown ITO films showed a low resistivity of 10$^{-4}$ $\Omega$ -cm and high transmittance of 85 %. With well fabricated poly-Si solar cells, we were able to achieve as high as 15 % conversion efficiency at the input power of 20 mW/$\textrm{cm}^2$.

  • PDF

Diode Equivalent Parameters of Solar Cell

  • Iftiquar, Sk Md;Dao, Vinh Ai;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.107-111
    • /
    • 2015
  • Current characteristic curve of an illuminated solar cell was used to determine its reverse saturation current density ($J_0$), ideality factor (n) and resistances, by using numerical diode simulation. High efficiency amorphous silicon, heterojunction crystalline Si (HIT), plastic and organic-inorganic halide perovskite solar cell shows n=3.27 for a-Si and n=2.14 for improved HIT cell as high and low n respectively, while the perovskite and plastic cells show n=2.56 and 2.57 respectively. The $J_0$ of these cells remain within $7.1{\times}10^{-7}$ and $1.79{\times}10^{-8}A/cm^2$ for poorer HIT and improved perovskite solar cell respectively.

Investigation of Anti-Reflection Coatings for Crystalline Si Solar Cells (결정질 실리콘 태양전지에 적용되는 반사방지막에 관한 연구)

  • Lee, Jae-Doo;Kim, Min-Jeong;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.367-370
    • /
    • 2009
  • It is important to reduce a reflection of light as a solar cell is device that directly converts the energy of solar radiation to electrical energy in oder to improve efficiency of solar cells. The antireflection coating has proven effective in providing substantial increase in solar cell efficiency. This paper investigates the formation of thin film PSi(porous silicon) layer on the surface of crystalline silicon substrates without other ARC(antirefiection coating) layers. On the other hand the formation of $SO_{2}/SiN_x$ ARC layers on the surface of crystalline silicon substrates. After that, the structure of PSi and $SO_2/SiN_x$ ARC was investigated by SEM and reflectance. The formation of PSi layer and $SO_{2}/SiN_x$ ARC layers on the textured silicon wafer result about 5% in the wavelength region from 0.4 to $1.0{\mu}m$. It is achieved on the textured crystalline silicon solar cell that each efficiency is 14.43%, 16.01%.

  • PDF

무전해 도금을 적용한 결정질 실리콘 태양전지의 효율 향상

  • Jeong, Myeong-Sang;Jang, Hyo-Sik;Song, Hui-Eun;Gang, Min-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.686-686
    • /
    • 2013
  • Crystalline silicon solar cell is a semiconductor device that converts light into electrical energy. Screen printing is commonly used to form the front/back electrodes in silicon solar cell. Screen printing method is convenient but usually shows high resistance and low aspect ratio, which cause the efficiency decrease in crystalline silicon solar cell. Recently the plating method is applied in c-Si solar cell to reduce the resistance and improve the aspect ratio. In this paper, we investigated the effect of additional electroless Ag plating into screen-printed c-Si solar cell and compared their electrical properties. All wafers used in this experiment were textured, doped, and anti-reflection coated. The electrode formation was performed with screen-printing, followed by the firing step. Aften then we carried out electroless Ag plating by changing the plating time in the range of 20 sec~5 min and light intensity. The light I-V curve and optical microscope were measured with the completed solar cell. As a result, the conversion efficiency of solar cells was increased mainly due to the decreased series resistance.

  • PDF

Performance of Crystalline Si Solar Cells with Temperature Controlled by a Thermoelectric Module (열전소자 온도조절법을 이용한 결정형 실리콘 태양전지의 성능 측정)

  • Heo, Kimoo;Lee, Daeho;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.375-379
    • /
    • 2015
  • A proper estimate of solar cell efficiency is of great importance for the feasibility analysis of solar cell power plant development. Since solar cell efficiency depends on temperature, several methods have been introduced to measure it by operating temperature modulation. However, the methods either rely on the external environment or need expensive equipment. In this paper, a thermoelectric module was used to control the operating temperature of crystalline silicon solar cells effectively and precisely over a wide range. The output characteristics of crystalline silicon solar cells in response to operating temperatures from $-5^{\circ}C$ to $100^{\circ}C$ were investigated experimentally. Their efficiencies decreased as the temperature rose, since the decrease in the open circuit voltage and fill factor exceeded the increase in the short circuit current. The maximum power temperature coefficient of the single crystalline solar cell was more sensitive to temperature change than that of the polycrystalline solar cell.

Poly-Si Cell with Preferential Grain Boundary Etching and ITO Electrode

  • Lim, D.G.;Lee, S.E.;Park, S.H.;Yi, J.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.125-131
    • /
    • 1999
  • This paper deals with a novel structure of poly-Si solar cell. A grain boundary(GB) of poly-Si acts as potential barrier and recombination center for photo-generated carriers. To reduce unwanted side effects at the GB of poly-Si, we employed physical GB removal of poly-Si using chemical solutions. Various chemical etchants such as Sirtl, Yang, Secco, and Schimmel were investigated for the preferential GB etching. Etch depth about 10 ${\mu}m$ was achieved by a Schimmel etchant. After a chemical etching of poly-Si, we used $POCl_3$ for emitter junction formation. This paper used an easy method of top electrode formation using a RF sputter grown ITO film. ITO films with thickness of 300 nm showed resistivity of $1.26{\times}10^{-4}{\Omega}-cm$ and overall transmittance above 80%. Using a preferential GB etching and ITO top electrode, we developed a new fabrication procedure of poly-Si solar cells. Employing optimized process conditions, we were able to achieve conversion efficiency as high as 16.6% at an input power of 20 $mW/cm^2$. This paper investigates the effects of process parameters: etching conditions, ITO deposition factors, and emitter doping densities in a poly-Si cell fabrication procedure.

  • PDF

Properties of Silicon Nitride Deposited by LF-PECVD with Various Thicknesses and Gas Ratios (가스비와 두께 가변에 따른 실리콘질화막의 특성)

  • Park, Je-Jun;Kim, Jin-Kuk;Lee, Hi-Deok;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.154-157
    • /
    • 2011
  • Hydrogenated silicon nitride deposited by LF-PECVD is commonly used for anti-reflection coating and passivation in silicon solar cell fabrication. The deposition of the optimized silicon nitride on the surface is elemental in crystalline silicon solar cell. In this work, the carrier lifetimes were measured while the thicknesses of $SiN_x$ were changed from 700 ${\AA}$ to 1150 ${\AA}$ with the gas flow of $SiH_4$ as 40 sccm and $NH_3$ as 120 sccm,. The carrier lifetime enhanced as the thickness of $SiN_x$ increased due to improved passivation effect. To study the characteristics of $SiN_x$ with various gas ratios, the gas flow of $NH_3$ was changed from 40 sccm to 200 sccm with intervals of 40 sccm. The thickness of $SiN_x$ was fixed as 1000 ${\AA}$ and the gas flow of $SiH_4$ as 40 sccm. The refractive index of SiNx and the carrier lifetime were measured before and after heat treating at $650^{\circ}C$ to investigate their change by the firing process in solar cell fabrication. The index of refraction of SiNx decreased as the gas ratios increased and the longest carrier lifetime was measured with the gas ratio $NH_3/SiH_4$ of 3.

  • PDF