• Title/Summary/Keyword: Si-solar cell

Search Result 653, Processing Time 0.025 seconds

High-Efficiency a-Si:H Solar Cell Using In-Situ Plasma Treatment

  • Han, Seung Hee;Moon, Sun-Woo;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok;Lee, Seungmin;Kim, Jungsu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.230-230
    • /
    • 2013
  • In amorphous or microcrystalline thin-film silicon solar cells, p-i-n structure is used instead of p/n junction structure as in wafer-based Si solar cells. Hence, these p-i-n structured solar cells inevitably consist of many interfaces and the cell efficiency critically depends on the effective control of these interfaces. In this study, in-situ plasma treatment process of the interfaces was developed to improve the efficiency of a-Si:H solar cell. The p-i-n cell was deposited using a single-chamber VHF-PECVD system, which was driven by a pulsed-RF generator at 80 MHz. In order to solve the cross-contamination problem of p-i layer, high RF power was applied without supplying SiH4 gas after p-layer deposition, which effectively cleaned B contamination inside chamber wall from p-layer deposition. In addition to the p-i interface control, various interface control techniques such as thin layer of TiO2 deposition to prevent H2 plasma reduction of FTO layer, multiple applications of thin i-layer deposition and H2 plasma treatment, H2 plasma treatment of i-layer prior to n-layer deposition, etc. were developed. In order to reduce the reflection at the air-glass interface, anti-reflective SiO2 coating was also adopted. The initial solar cell efficiency over 11% could be achieved for test cell area of 0.2 $cm^2$.

  • PDF

실리콘 박막 태양전지를 위한 CdSe계 양자점 광변환구조체

  • Sin, Myeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.135.2-135.2
    • /
    • 2014
  • Photon conversion technology for thin film solar cells is reviewed. The high-energy photons which are hardly absorbed in solar cells can be transformed the low energy photon by the photon conversion process such as down conversion or down shift, which can improve the solar cell efficiency over the material limit. CdSe-based quantum dot materials commonly used in LED can be used as the photon conversion layer for Si thin film solar cells. The photon conversion structure of CdSe-based quantum dot for Si thin film solar cells will be presented and the pros and cons for the Si thin film solar cells integrated with the photon conversion layers will be discussed.

  • PDF

Study about Conversion Efficiency of c-Si Solar Cells Using Low energy(40keV) Electron Beam (40keV 저에너지 전자빔을 이용한 단결정 Si 태양전지의 변환 효율에 관한 연구)

  • Yoon J.P.;Kang B.B.;Park S.J.;Yoon P.H.;Cha I.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.942-948
    • /
    • 2003
  • This paper about the small electron beam irradiator for solar cell's efficiency. Many things are studied by method to increase conversion efficiency of solar cell. We selected electron beam by method for conversion efficiency of solar cell. Energy bands of this electron beam irradiator is 80keV(max.). And, solar cells that apply in this paper are crystal Si. Average efficiency of solar cell that applies in this experiment is 10$\%$. This system manufactured low energy electron beam irradiator. And, electron beam irradiation to solar cell in vacuum chamber of this irradiator. Irradiation area is 20*20 [mm2] by 40[keV].

  • PDF

The Effect of Surface Recombination Current on the Saturation Current in Si Solar Cell (Si 태양전지(太陽電池)의 표면재결합(表面再結合) 전류(電流)가 포화전류(飽和電流)에 미치는 영향(影響))

  • Shin, Kee-Shik;Lee, Ki-Seon;Choi, Byung-Ho
    • Solar Energy
    • /
    • v.8 no.2
    • /
    • pp.12-18
    • /
    • 1988
  • The effect of surface recombination current density on the saturation current density in Si solar cell has been studied. Theoretical model for surface recombination current was set up from emitter transparent model of M.A. Shibib, and saturation current of Si solar cell made by ion implantation method was also measured by digital electrometer. The theoretical surface recombination current density which is the same as saturation surface recombination current density in Shibib model was $10^{-11}[A/cm^2]$ and the measured value was ranged from $8{\times}10^{-10}$ to $2{\times}10^{-9}[A/cm^2]$. Comparing with the ideal p-n junction of Shockley, transparent emitter model shows improved result by $10^2$ order of saturation current density. But there still exists $10^2$ order of difference of saturation current density between theoretical and actual values, which are assumed to be caused by 1) leakage current through solar cell edge, 2) recombination of carriers in the depletion layer, 3) the series resistance effect and 4) the tunneling of carriers between states in the band gap.

  • PDF

A Study on the Photo-Conductive Characteristics of (p)ZnTe/(n)Si Solar Cell and (n)CdS-(p)ZnTe/(n)Si Poly-Junction Thin Film ((p)ZnTe/(n)Si 태양전지와 (n)CdS-(p)ZnTe/(n)Si 복접합 박막의 광도전 특성에 관한 연구)

  • Jhoun, Choon-Saing;Kim, Wan-Tae;Huh, Chang-Su
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.74-83
    • /
    • 1991
  • In this study, the (p)ZnTe/(n)Si solar cell and (n)CdS-(p)ZnTe/(n)Si poly-junction thin film are fabricated by vaccum deposition method at the substrate temperature of $200{\pm}1^{\circ}C$ and then their electrical properties are investigated and compared each other. The test results from the (p)ZnTe/(n)Si solar cell the (n)CdS-(p)ZnTe/(n)Si poly-junction thin fiim under the irradiation of solar energy $100[mW/cm^2]$ are as follows; Short circuit current$[mA/cm^2]$ (p)ZnTe/(n)Si:28 (n)CdS-(p)ZnTe/(n)Si:6.5 Open circuit voltage[mV] (p)ZnTe/(n)Si:450 (n)CdS-(p)ZnTe/(n)Si:250 Fill factor (p)ZnTe/(n)Si:0.65 (n)CdS-(p)ZnTe/(n)Si:0.27 Efficiency[%] (p)ZnTe/(n)Si:8.19 (n)CdS-(p)ZnTe/(n)Si:2.3 The thin film characteristics can be improved by annealing. But the (p)ZnTe/(n)Si solar cell are deteriorated at temperatures above $470^{\circ}C$ for annealing time longer than 15[min] and the (n)CdS-(p)ZnTe/(n)Si thin film are deteriorated at temperature about $580^{\circ}C$ for longer than 15[min]. It is found that the sheet resistance decreases with the increase of annealing temperature.

  • PDF

Electrical and Optical Properties of Violet-Sensitive $SnO_2-SiO_2-Si$(n-p) Type Photocell (자색광에 민감한 $SnO_2-SiO_2-Si$(n-p)형 광전지의 전기적광하적특성)

  • 김유신
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 1977
  • We have obtained a violet-sensitive photocell as a part of the developing project on such type of solar cell. The photocell has the structure of SnO2-SiO2-Si MOS coupled on Si n-p homojuction. It is not relevant to use as a solar cell because of its small photovoltaic power(0.25V, 150$mutextrm{A}$), however, since the spectral response of the cell is shifted toward the violet band region and its switching speed is fairly high in comparison with those of the Si p-n homojunction type solar cell, it is expected that we will be able to find mere novel utilities than the ordinary silicon photocell.

  • PDF

A Review on TOPCon Solar Cell Technology

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Chowdhury, Sanchari;Pham, Duy Phong;Kim, Youngkuk;Ju, Minkyu;Cho, Younghyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.9 no.3
    • /
    • pp.75-83
    • /
    • 2021
  • The tunnel oxide passivated contact (TOPCon) structure got more consideration for development of high performance solar cells by the introduction of a tunnel oxide layer between the substrate and poly-Si is best for attaining interface passivation. The quality of passivation of the tunnel oxide layer clearly depends on the bond of SiO in the tunnel oxide layer, which is affected by the subsequent annealing and the tunnel oxide layer was formed in the suboxide region (SiO, Si2O, Si2O3) at the interface with the substrate. In the suboxide region, an oxygen-rich bond is formed as a result of subsequent annealing that also improves the quality of passivation. To control the surface morphology, annealing profile, and acceleration rate, an oxide tunnel junction structure with a passivation characteristic of 700 mV or more (Voc) on a p-type wafer could achieved. The quality of passivation of samples subjected to RTP annealing at temperatures above 900℃ declined rapidly. To improve the quality of passivation of the tunnel oxide layer, the physical properties and thermal stability of the thin layer must be considered. TOPCon silicon solar cell has a boron diffused front emitter, a tunnel-SiOx/n+-poly-Si/SiNx:H structure at the rear side, and screen-printed electrodes on both sides. The saturation currents Jo of this structure on polished surface is 1.3 fA/cm2 and for textured silicon surfaces is 3.7 fA/cm2 before printing the silver contacts. After printing the Ag contacts, the Jo of this structure increases to 50.7 fA/cm2 on textured silicon surfaces, which is still manageably less for metal contacts. This structure was applied to TOPCon solar cells, resulting in a median efficiency of 23.91%, and a highest efficiency of 24.58%, independently. The conversion efficiency of interdigitated back-contact solar cells has reached up to 26% by enhancing the optoelectrical properties for both-sides-contacted of the cells.

Poly-Si Thin Film and Solar Cells by VHF-PECVD (VHF-PECVD를 이용한 다결정 실리콘 박막 증착 및 태양전지 제조)

  • Lee, J.C.;Chung, Y.S.;Kim, S.K.;Youn, K.H.;Park, I.J.;Song, J.S.;Kwon, S.W.;Lim, K.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.995-998
    • /
    • 2003
  • This paper presents the deposition of poly-Si thin-film and fabrication of a solar cell by VHF-PECVD method. The poly-Si thin films. and pin-type solar cells are fabricated using multi-chamber cluster tool system. A 7.4% conversion efficiency was achieved from poly-Si thin film solar cells with total thickness less than $5{\mu}m$. The physical characteristic was measured by Raman spectroscopy, solar cell characteristic was measured under AM1.5 illumination.

  • PDF

Characteristics of Crystalline Silicon Solar Cells with Double Layer Antireflection Coating by PECVD (결정질 실리콘 태양전지의 이중 반사방지막 특성에 대한 연구)

  • Kim, Jin-Kuk;Park, Je-Jun;Hong, Ji-Hwa;Kim, Nam-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.243-247
    • /
    • 2012
  • The paper focuses on an anti-reflection (AR) coating deposited by PECVD in silicon solar cell fabrication. AR coating is effective to reduce the reflection of the light on the silicon wafer surface and then increase substantially the solar cell conversion efficiency. In this work, we carried out experiments to optimize double AR coating layer with silicon nitride and silicon oxide for the silicon solar cells. The p-type mono crystalline silicon wafers with $156{\times}156mm^2$ area, 0.5-3 ${\Omega}{\cdot}cm$ resistivity, and $200{\mu}m$ thickness were used. All wafers were textured in KOH solution, doped with $POCl_3$ and removed PSG before ARC process. The optimized thickness of each ARC layer was calculated by theoretical equation. For the double layer of AR coating, silicon nitride layer was deposited first using $SiH_4$ and $NH_3$, and then silicon oxide using $SiH_4$ and $N_2O$. As a result, reflectance of $SiO_2/SiN_x$ layer was lower than single $SiN_x$ and then it resulted in increase of short-circuit current and conversion efficiency. It indicates that the double AR coating layer is necessary to obtain the high efficiency solar cell with PECVD already used in commercial line.

  • PDF

Terminal Configuration and Growth Mechanism of III-V on Si-Based Tandem Solar Cell: A Review

  • Alamgeer;Muhammad Quddamah Khokhar;Muhammad Aleem Zahid;Hasnain Yousuf;Seungyong Han;Yifan Hu;Youngkuk Kim;Suresh Kumar Dhungel;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.442-453
    • /
    • 2023
  • Tandem or multijunction solar cells (MJSCs) can convert sunlight into electricity with higher efficiency (η) than single junction solar cells (SJSCs) by dividing the solar irradiance over sub-cells having distinct bandgaps. The efficiencies of various common SJSC materials are close to the edge of their theoretical efficiency and hence there is a tremendous growing interest in utilizing the tandem/multijunction technique. Recently, III-V materials integration on a silicon substrate has been broadly investigated in the development of III-V on Si tandem solar cells. Numerous growth techniques such as heteroepitaxial growth, wafer bonding, and mechanical stacking are crucial for better understanding of high-quality III-V epitaxial layers on Si. As the choice of growth method and substrate selection can significantly impact the quality and performance of the resulting tandem cell and the terminal configuration exhibit a vital role in the overall proficiency. Parallel and Series-connected configurations have been studied, each with its advantage and disadvantages depending on the application and cell configuration. The optimization of both growth mechanisms and terminal configurations is necessary to further improve efficiency and lessen the cost of III-V on Si tandem solar cells. In this review article, we present an overview of the growth mechanisms and terminal configurations with the areas of research that are crucial for the commercialization of III-V on Si tandem solar cells.