• 제목/요약/키워드: Si-O-C bond

검색결과 103건 처리시간 0.026초

CMP 공정중 TEOS 막의 슬러리 온도 변화에 따른 표면 분석 연구 (Study on Surface Analysis of TEOS Film by Change of Slurry Temperature in CMP Process)

  • 고필주;김남훈;서용진;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.645-646
    • /
    • 2005
  • The increasing hydroxyl ($OH^-$) groups diffused into the TEOS and then weakened reactants such as H-C-O-Si bonds on the surface of TEOS film were actively generated with the increase of slurry temperature. These soft reactants on the surface of TEOS film could be removed easily by mechanical parts of CMP.

  • PDF

알콕사이드로부터 Mullite 분말의 합성 및 Mullite-Zirconia 복합체의 특성 (Synthesis of Mullite Powder from Alkoxides and the Properties of the Mullite-Zircocnia Composites)

  • 함종근;이홍림
    • 한국세라믹학회지
    • /
    • 제27권2호
    • /
    • pp.201-210
    • /
    • 1990
  • The mullite-15v/o ZrO2 composites were prepared by dispersing ZrO2-3m/o Y2O3 powders into the mullite matrix in order to improve the mechanical properties of the mullite. The densification and retention of t-ZrO2 in the matrix of synthetic mullite were also investigated. From IR spectroscopic analysis, the obtained amorphous SiO2-Al2O3 powder was observed to have Si-O-Al chemical bond in its structure which might result in the homogeneous mullite composition. The lattice parameter of the mullite powder calcined above 130$0^{\circ}C$ (a0=7.5468$\AA$) is nearly close to the value of stoichiometric mullite (71.8wt% Al2O3, a0=7.5456$\AA$). The sintering behavior, microstructure, flexural strength and fracture toughness of the mullite and mullite-15v/o ZrO2 composites have been studied. The mullite-15v/o ZrO2(+3m/o Y2O3) ceramics with relative densities of 96% were obtained when sintered at 1$600^{\circ}C$. The flexural strength and fractrue toughness of the composites sintered at 1$600^{\circ}C$(calcination temperature of mullite powders ; 125$0^{\circ}C$) had maximum values of 307MPa and 2.50MPa.m1/2, respectively. The fracture toughness improvement in the mullite-ZrO2 cmoposite is assumed to be resulted from the combined effect of the stress-induced phase transformation of tetragonal ZrO2 and the crack deflection due to microcracking by the monoclinic ZrO2 formation.

  • PDF

Two Anhydrous Zeolite X Crystal Structures, $Pd_{18}Ti_{56}Si_{100}Al_{92}O_{384} and Pd_{21}Tl_{50}Si_{100}Al_{92}O_{384}$

  • 윤보영;송미경;이석희;김양
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권1호
    • /
    • pp.30-36
    • /
    • 2001
  • The crystal structures of fully dehydrated $Pd^{2+}$ - and $TI^{+}$ -exchanged zeolite X, $Pd_{18}TI_{56}Si_{100}Al_{92}O_{384}(Pd_{18}TI_{50-}X$, a = $24.935(4)\AA$ and $Pd_{21}TI_{50}Si_{100}Al_{92}O_{384}(Pd_{21}TI_{50-}X$ a = $24.914(4)\AA)$, have been determined by single-crystal X-ray diffraction methods in the cubic space group Fd3 at $21(1)^{\circ}C.$ The crystals were prepared using an exchange solution that had a $Pd(NH_3)_4Cl_2\;:TINO_3$ mole ratio of 50 : 1 and 200 : 1, respectively, with a total concentration of 0.05M for 4 days. After dehydration at $360^{\circ}C$ and 2 ${\times}$$10^{-6}$ Torr in flowing oxygen for 2 days, the crystals were evacuated at $21(1)^{\circ}C$ for 2 hours. They were refined to the final error indices $R_1$ = 0.045 and $R_2$ = 0.038 with 344 reflections for $Pd_{18}Tl_{56-}X$, and $R_1$ = 0.043 and $R_2$ = 0.045 with 280 reflections for $Pd_{21}Tl_{50-}X$; I > $3\sigma(I).$ In the structure of dehydrated $Pd_{18}Tl_{56-}X$, eighteen $Pd^{2+}$ ions and fourteen $TI^{+}$ ions are located at site I'. About twenty-seven $TI^{+}$ ions occupy site II recessed $1.74\AA$ into a supercage from the plane of three oxygens. The remaining fifteen $TI^{+}$ ions are distributed over two non-equivalent III' sites, with occupancies of 11 and 4, respectively. In the structure of $Pd_{21}Tl_{50-}X$, twenty $Pd^{2+}$ and ten $TI^{+}$ ions occupy site I', and one $Pd^{2+}$ ion is at site I. About twenty-three $TI^{+}$ ions occupy site II, and the remaining seventeen $TI^{+}$ ions are distributed over two different III' sites. $Pd^{2+}$ ions show a limit of exchange (ca. 39% and 46%), though their concentration of exchange was much higher than that of $TI^{+}$ ions. $Pd^{2+}$ ions tend to occupy site I', where they fit the double six-ring plane as nearly ideal trigonal planar. $TI^{+}$ ions fill the remaining I' sites, then occupy site II and two different III' sites. The two crystal structures show that approximately two and one-half I' sites per sodalite cage may be occupied by $Pd^{2+}$ ions. The remaining I' sites are occupied by $TI^{+}$ ions with Tl-O bond distance that is shorter than the sum of their ionic radii. The electrostatic repulsion between two large $TI^{+}$ ions and between $TI^{+}$ and $Pd^{2+}$ ions in the same $\beta-cage$ pushes each other to the charged six-ring planes. It causes the Tl-O bond to have some covalent character. However, $TI^{+}$ ions at site II form ionic bonds with three oxygens because the super-cage has the available space to obtain the reliable ionic bonds.

Review of the Silicon Oxide and Polysilicon Layer as the Passivated Contacts for TOPCon Solar Cells

  • Mengmeng Chu;Muhammad Quddamah Khokhar;Hasnain Yousuf;Xinyi Fan;Seungyong Han;Youngkuk Kim;Suresh Kumar Dhungel;Junsin Yi
    • 한국전기전자재료학회논문지
    • /
    • 제36권3호
    • /
    • pp.233-240
    • /
    • 2023
  • p-type Tunnel Oxide Passivating Contacts (TOPCon) solar cell is fabricated with a poly-Si/SiOx structure. It simultaneously achieves surface passivation and enhances the carriers' selective collection, which is a promising technology for conventional solar cells. The quality of passivation is depended on the quality of the tunnel oxide layer at the interface with the c-Si wafer, which is affected by the bond of SiO formed during the subsequent annealing process. The highest cell efficiency reported to date for the laboratory scale has increased to 26.1%, fabricated by the Institute for Solar Energy Research. The cells used a p-type float zone silicon with an interdigitated back contact (IBC) structure that fabricates poly-Si and SiOx layer achieves the highest implied open-circuit voltage (iVoc) is 750 mV, and the highest level of edge passivation is 40%. This review presents an overview of p-type TOPCon technologies, including the ultra-thin silicon oxide layer (SiOx) and poly-silicon layer (poly-Si), as well as the advancement of the SiOx and poly-Si layers. Subsequently, the limitations of improving efficiency are discussed in detail. Consequently, it is expected to provide a basis for the simplification of industrial mass production.

Sliding Wear Behavior of Plasma Sprayed Zirconia Coatingagainst Silicon Carbide Ceramic Ball

  • Le Thuong Hien;Chae Young-Hun;Kim Seock Sam;Kim Bupmin;Yoon Sang-bo
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.66-74
    • /
    • 2004
  • The sliding wear behavior of $ZrO_2-22wt\%MgO\;(MZ)\;and\;ZrO_2-8wt\%Y_2O_3\;(YZ)$ deposited on a casting aluminum alloy with bond layer (NiCrCoAlY) by plasma spray against an SiC ball was investigated under dry test conditions at room temperature. At all load conditions, the wear mechanisms of the MZ and the YZ coatings were almost the same. The wear mechanisms involved the forming of a smooth film by material transferred on the sliding surface and pullout. The wear rate of the MZ coating was less than that of the YZ coating. With an increase normal load the wear rate of the studied coatings increased. The SEM was used to examine the sliding surfaces and elucidate likely wear mechanisms. The EDX analysis of the worn surface indicated that material transfer was occurred from the SiC ball to the disk. It was suggested that the material transfer played an important role in the wear performance.

  • PDF

기공형성에 의한 SiOCH 박막의 유전 특성 (Dielectric Characteristics due to the nano-pores of SiOCH Thin Flm)

  • 김종욱;박인철;김홍배
    • 반도체디스플레이기술학회지
    • /
    • 제8권3호
    • /
    • pp.19-23
    • /
    • 2009
  • We have studied dielectric characteristics of low-k interlayer dielectric materials was fabricated by plasma enhanced chemical vapor deposition (PECVD). BTMSM precursor was introduced with the flow rates from 24 sccm to 32 sccm by 2 sccm step in the constant flow rate of 60 sccm $O_2$. Then, SiOCH thin film deposited at room temperature was annealed at temperature of $400^{\circ}C$ and $500^{\circ}C$ for 30 minutes in vacuum. The vibrational groups of SiOCH thin films were analyzed by FT/IR absorption lines, and the dielectric constant of the low-k SiOCH thin films were obtained by measuring C-V characteristic curves. With the result that FTIR analysis, as BTMSM flow rate increase, relative carbon content of SiOCH thin film increased from 29.5% to 32.2%, and increased by 32.8% in 26 sccm specimen after $500^{\circ}C$ annealing. Dielectric constant was lowest by 2.32 in 26 sccm specimen, and decreased more by 2.05 after $500^{\circ}C$ annealing. Also, leakage current is lowest by $8.7{\times}10^{-9}A/cm^2$ in this specimen. In the result, shift phenomenon of chemical bond appeared in SiOCH thin film that BTMSM flow rate is deposited by 26 sccms, and relative carbon content was highest in this specimen and dielectric constant also was lowest value

  • PDF

유리섬유/Nylon 6 복합재료의 표면처리 최적조건과 개별결합력에 관한 연구 (Studies on the Optimum Surface Treatment Conditions and the Interfacial Bond Strength of Glass fiber/Nylon 6 Composites)

  • 나성기;박종신
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1997년도 춘계학술발표회 논문집
    • /
    • pp.26-31
    • /
    • 1997
  • 유리섬유/nylon 6 복합재료의 계면결합강도를 증가시키기 위하여 r-APS(r-Aminopropyltriethoxysilane)로 유리섬유의 표면을 처리 하였다. 이때 표면처리의 최적 조건을 찾기위해서 처리후 기기분석과 계면결합강도 측정 등을 하였다. 농도, pH, 처리시간, 온도를 변화시키면서 표면처리를 한 후 흡착량을 살펴본 결과 처리 농도에 의해서는 흡착량이 단조증가하였으며 처리시간에 따라서는 5분정도에서, 처리온도에 의해서는 30C 부근에서 최대 흡착량을 보였다. 또한 pH에 따른 흡착량은 silane의 고유 pH인 10.5부근에서 최대치를 나타냈다. FR-IR 분석에 의하면 NH2의 NH3 bending mode가 1607cm-1, 1575cm-1에서 나타났으며 SiOH의 SiO band는 960cm-1에서 나타났다. XPS를 통해서는 N ls와 Si 2p의 존재를 확인할 수 있었다. 표면처리된 유리섬유와 matrix인 nylon 6를 이용해 단섬유내장시편을 만들어 fragmentation test를 한 결과 계면결합강도는 약 5분의 처리시간과 1%(wt%)의 농도에서 최대값을 보였다.

  • PDF

Effects of dentin surface preparations on bonding of self-etching adhesives under simulated pulpal pressure

  • Chantima Siriporananon;Pisol Senawongse;Vanthana Sattabanasuk;Natchalee Srimaneekarn;Hidehiko Sano;Pipop Saikaew
    • Restorative Dentistry and Endodontics
    • /
    • 제47권1호
    • /
    • pp.4.1-4.13
    • /
    • 2022
  • Objectives: This study evaluated the effects of different smear layer preparations on the dentin permeability and microtensile bond strength (µTBS) of 2 self-etching adhesives (Clearfil SE Bond [CSE] and Clearfil Tri-S Bond Universal [CTS]) under dynamic pulpal pressure. Materials and Methods: Human third molars were cut into crown segments. The dentin surfaces were prepared using 4 armamentaria: 600-grit SiC paper, coarse diamond burs, superfine diamond burs, and carbide burs. The pulp chamber of each crown segment was connected to a dynamic intra-pulpal pressure simulation apparatus, and the permeability test was done under a pressure of 15 cmH2O. The relative permeability (%P) was evaluated on the smear layer-covered and bonded dentin surfaces. The teeth were bonded to either of the adhesives under pulpal pressure simulation, and cut into sticks after 24 hours water storage for the µTBS test. The resin-dentin interface and nanoleakage observations were performed using a scanning electron microscope. Statistical comparisons were done using analysis of variance and post hoc tests. Results: Only the method of surface preparation had a significant effect on permeability (p < 0.05). The smear layers created by the carbide and superfine diamond burs yielded the lowest permeability. CSE demonstrated a higher µTBS, with these values in the superfine diamond and carbide bur groups being the highest. Microscopic evaluation of the resin-dentin interface revealed nanoleakage in the coarse diamond bur and SiC paper groups for both adhesives. Conclusions: Superfine diamond and carbide burs can be recommended for dentin preparation with the use of 2-step CSE.

실리카-타이타니아 하이브리드 코팅막의 제조 및 특성평가 (Fabrication and characterization of silica-titania hybrid film using silane treated $TiO_2$ sol)

  • 한동희;강동준;김석준;강동필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.553-554
    • /
    • 2007
  • By sol-gel method, we have fabricated silica-titania hybrid film using silane treated colloidal $TiO_2$ and characterized the film through FT-IR, TGA, UV-VIS and AFM. The silica-titania hybrid film showed Ti-O-Si chemical bond at FT-IR peak of $910{\sim}940cm^{-1}$. The fabricated hybrid film showed thermal stability of around $350^{\circ}C$(5wt% loss temperature) and transparency more than 90%. In addition, the good surface smoothness was confirmed by AFM. Therefore, the silica-titania hybrid film with outstanding properties can be potential for application in electronics and displays.

  • PDF

상압건조 물유리 에어로젤에 대한 표면개질제의 영향 (Surface modifiers on the waterglass aerogels prepared by ambient drying process)

  • 김태정;남산;오영제
    • 센서학회지
    • /
    • 제15권3호
    • /
    • pp.173-178
    • /
    • 2006
  • Silica aerogel with ultra low density and high porosity has been focused on versatile application due to its fascinating properties. Ambient drying process of waterglass, in this study was researched to fabricate a crack-free monolith body in the point view of cost effective way. Wet gel was obtained by removing of $Na^{+}$ ions in waterglass, which contains 8 wt% of $SiO_{2}$. Xylene, which has a low vapor pressure, was used as a solution substitutor to prevent the formation a cracks during drying. Various surface modifiers like as hexamethyldisilazane (HMDSZ), trimethylchlorosilane (TMCS), methyltriethoxylsilane (MTES), methyltrimethoxysilane (MTMS) and phenyltriethoxysilane (PTES) were used in order to improve hydrophobicity of the waterglass Silica aerogel. Some physical properties of the surface modified aerogels were investigated by FT-IR, TGA, BET and SEM. Hydrophobicity and hydrophilicity of Silica aerogel is attributed to the Si-OH bond and the non-polar C-H bond groups on the surface of aerogel. Crack-free waterglass aerogel with >90 % of porosity, 17 nm of pore size and <0.15 $g/cm^{3}$ of density was prepared. HMDSZ and TMCS are effective as a surface modifier