• Title/Summary/Keyword: Si-C composites

Search Result 738, Processing Time 0.025 seconds

Studies on the Effects of Variables on the Fabrication Of C/SiC Composite by Chemical Vapor Infiltration in a Fluidized Bed Reactor (유동층반응기에서 화학증기침투에 의한 C/SiC의 복합체 제조시 변수의 영향 연구)

  • Lee, Sung-Joo;Kim, Yung-Jun;Kim, Mi-Hyun;Rim, Byung-O;Chung, Gui-Yung
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.843-847
    • /
    • 1999
  • In this research, C/SiC composites, i.e. activated carbon coated with SiC obtained from dichlorodimethylsilane(DDS) and hydrogen, have been made by chemical vapor infiltration(CVI) in a fluidized bed reactor. Activated carbons of sizes of 4~12, 12~20, and 20~40 mesh were used. After deposition the surface area, the amount and the shape of deposit of each sample were observed at different concentrations of reactant DDS, sizes of activated carbon, reaction pressures and reaction times. The experimental results showed that uniform deposition in the pores of sample was obtained at a lower concentration of DDS and a lower pressure. Additionally, from the observation that the pore diameter and the surface area have minimum values at a certain time of deposition, it was known that deposition occurred inside of the pore at first and then on the outside of particle. Small particles of SiC were deposited uniformly on the surface of activated carbon at lower DDS concentrations and lower reaction pressures. The results were confirmed by SEM, TGA, the pore size distribution analyzer and BET.

  • PDF

Application of ultra-high-temperature ceramics to oxidation-resistant and anti-ablation coatings for carbon-carbon composite (탄소-탄소 복합재의 내삭마 내산화 코팅을 위한 초고온 세라믹스의 적용)

  • Kim, Hyun-Mi;Choi, Sung-Churl;Cho, Nam Choon;Lee, Hyung Ik;Choi, Kyoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.283-293
    • /
    • 2019
  • As applications in extreme environments such as aerospace, high-energy plasma and radio-active circumstances increases, the demand for materials that require higher melting points, higher mechanical strength and improved thermal conductivity continues to increase. Accordingly, in order to improve the oxidation/abrasion resistance of the carbon-carbon composite, which is a typical heat-resistant material, a method of using ultra high temperature ceramics was reviewed. The advantages and disadvantages of CVD coating, pack cementation and thermal plasma spraying, the simplest methods for synthesizing ultra-high temperature ceramics, were compared. As a method for applying the CVD coating method to C/C composites with complex shapes, the possibility of using thermodynamic calculation and CFD simulation was proposed. In addition, as a result of comparing the oxidation resistance of the TaC/SiC bi-layer coating and TaC/SiC multilayer coating produced by this method, the more excellent oxidation resistance of the multilayer coating on C/C was confirmed.

Low-temperature sintering and dielectric properties of the (1-x)$BiNbO_4-(x)ZnNb_2O_6$ ceramics ((1-x)$BiNbO_4-(x)ZnNb_2O_6$ 세라믹스의 저온 소결 및 유전 특성)

  • Kim, Yun-Han;Yoon, Sang-Ok;Kim, Shin;Kim, Kwan-Soo;Kim, Kyung-Joo;Park, Jong-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.284-284
    • /
    • 2007
  • In this study, the microwave dielectric property variations of (1-x)$BiNbO_4-(x)ZnNb_2O_6$ composites (x=0.3, 0.5 and 0.7) with 10wt% zinc borosilicate(ZBS) glass was investigated as a function of the substitution of $ZnNb_2O_6$ with a view to applying thes system to LTCC technology. The all composition addition of 10wt% ZBS glass ensured a successful sintering below $900^{\circ}C$. In addition, a small amount of $Bi_2SiO_5$ as the secondary phase was observed in the all composition. The substitution of $ZnNb_2O_6$ on the $BiNbO_4$ composites increased the $Q{\times}f$ values, but it decreased the sinterability and dielectric constant due to the high sintering temperature and low dielectric constant of $ZnNb_2O_6\;than\;BiNbO_4$ ceramics. The increasing of $ZnNb_2O_6$ content from 0.3 to 0.7 in the (1-x)$BiNbO_4-(x)ZnNb_2O_6$ composites with 10wt% ZBS glass sintered at $900^{\circ}C$ demonstrated 28.1~15.6 in the dielectric constant$({\varepsilon}_r)$, 5,500~8,700GHz in the $Q{\times}f$ value.

  • PDF

Low Temperature Sintering and Dielectric Properties of CaCO3-Al2O3 Mixture and Compound with CAS-based Glass (CAS계 유리가 첨가된 CaCO3-Al2O3 혼합물 및 화합물의 저온 소결 및 유전 특성)

  • Yoon, Sang-Ok;Kim, Myung-Soo;Kim, Kwan-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.397-404
    • /
    • 2009
  • Effects of ceramic filler types and dose on the low temperature sintering and dielectric properties of ceramic/$CaO-Al_2O_3-SiO_2$ (CAS) glass composites were investigated. All of the specimens were sintered at $850{\sim}900^{\circ}C$ for 2 h, which conditions are required by the low-temperature co-firing ceramic (LTCC) technology. Ceramic fillers of $CaCO_3$, $Al_2O_3$, $CaCO_3-Al_2O_3$ mixture, and $CaCO_3-Al_2O_3$ compound ($CaAl_2O_4$), respectively, were used. The addition of $Al_2O_3$ yielded the crystalline phase of alumina, which was associated with the inhibition of sintering, while, $CaCO_3$ resulted in no apparent crystalline phase but the swelling was significant. The additions of $CaCO_3-Al_2O_3$ mixture and $CaAl_2O_4$, respectively, yielded the crystalline phases of alumina and anorthite, and the sintering properties of both composites increased with the increase of filler addition and the sintering temperature. In addition, the $CaAl_2O_4$/CAS glass composite, sintered at $900^{\circ}C$, demonstrated good microwave dielectric properties. In overall, all the investigated fillers of 10 wt% addition, except $CaCO_3$, yielded reasonable sintering (relative density, over 93 %) and low dielectric constant (less than 5.5), demonstrating the feasibility of the investigated composites for the application of the LTCC substrate materials.

Fabrication of spectacle lens cutting materials (렌즈 절삭공구 재료의 제조)

  • Lee, Young-II
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.111-114
    • /
    • 2001
  • This paper presents the influence of the additive composition on flexural strength and hardness of SiC-TiC composites materials for spectacle lens cutting materials. The materials were hot-pressed at $1800^{\circ}C$ and subsequently annealed at $1910^{\circ}C$ for 3h. The heating rate was $15^{\circ}C/min$ and the cooling rate about $25^{\circ}C/min$ in from the sintering temperature to $1300^{\circ}C$. The growth of particles of spectacle lens cutting materials was analysed by SEM and crystalline phases were discussed by x-ray diffractometry. Typical fracture toughness and hardness of materials for spectacle lens cutting were $6.1MPa{\cdot}m^{1/2}$ and 14.9 GPa, respectively.

  • PDF

Dielectric Properties of Complex Microstructure for High Strength LTCC Material (고강도 LTCC 소재을 위한 복합구조의 유전특성)

  • Kim, Jin-Ho;Hwang, Seong-Jin;Sung, Woo-Kyung;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.309-309
    • /
    • 2007
  • The LTCCs (low-temperature co-fired ceramics) are very important for electronic industry to build smaller RF modules and to fulfill the necessity for miniaturization of devices in wireless communication industry. The dielectric materials with sintering temperature $T_{sint}$<$900^{\circ}C$ are required. In this study, we investigated with glass-ceramic composition, which was crystallized with two crystals. The microstructure, crystal phases, thermal and mechanical properties, and dielectric properties of the composites were investigated using FE-SEM, XRD, TG-DTA, 4-point bending strength test and LCR measurement. The starting temperature for densification of a sintered body was at $779{\sim}844^{\circ}C$ and the glass frits were formatted to the crystal phases, $CaAl_2Si_2O_8$(anorthite) and $CaMgSi_O_6$(diopside), at sintering temperature. The sintered bodies exhibited applicable dielectric properties, namely 6-9 for ${\varepsilon}_r$. The results suggest that the glass-ceramic composite would be potentially possible to application of low dielectric L TCC materials.

  • PDF

A Study on the Behavior of Charged Particles of Silicone Rubbers (실리콘 고무의 하전입자의 거동에 관한 연구)

  • Lee, Sung-Ill
    • Elastomers and Composites
    • /
    • v.31 no.5
    • /
    • pp.335-340
    • /
    • 1996
  • In order to look into the internal structure and the properties in the silicone rubbers added reinforcing fillers; silica $additives(O{\sim}140phr)$, and to examine the behavior of charged particles, the properties of thermally stimulated current(TSC) and X-Ray diffraction are investigated, respectively. And then, from the TSC which are formed by applying the electric field of $2{\sim}5kV/mm$ to specimen at the temperature range from -150 to $260^{\circ}C$, the results are as follwing: In the case of non-filled specimen, four peaks of ${\delta},\;{\gamma},\;{\beta}\;and\;{\alpha}$ are obtained at the temperature of $-120^{\circ}C,\;-60^{\circ}C,\;20^{\circ}C\;and\;130^{\circ}C$, respectively and the case of filled specimen, three peaks of ${\delta},\;{\alpha}_2\;and\;{\alpha}_1$ are observed at the temperature of $-120^{\circ}C,\;80^{\circ}C\;and\;130^{\circ}C$, respectively. The origins of these peaks are that, the ${\delta}$ peak seems to the result from the contribution of side chain methyl radical, and the ${\gamma}$ peak from the depolarization of space charge polarization owing to be added impurity during manufacturing specimens, and the ${\beta}$ peak from the orientation of $Si-CH_3$ dipole, and the ${\alpha}_2$ near the temperature of $80^{\circ}C$ from hydroxyl in carboxylic radical, and finally, the ${\alpha}_1$ peak near the temperature of $130^{\circ}C$ from carboxyl acid that is formed by the thermal oxidation of high temperature.

  • PDF

A Study for Characteristic and Manufacturing of Porous Ni/AC4C and Ni-Cr/AC4C Composites (다공질 Ni 및 Ni-Cr으로 강화한 AC4C 복합재료의 제조 및 특성연구)

  • Kim, Young-Hyun;Kim, Eok-Soo;Yeo, In-Dong;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Ni and Ni-Cr porous metals which are estimated to be easy to fabricate by squeeze casting are used as strengtheners for composite materials. As a matrix material, Al-7%wtSi-0.3 wt%Mg(AC4C) has been used. In case of Ni/AC4C and Ni-Cr/AC4C composite, $750^{\circ}C$ melt temperature and minimum 25 MPa squeezing pressure are needed to produce sound composite materials. The observation of interfacial reaction zone at various heat treatment condition showed that solutionizing temperature of above 520^{\circ}C$, the interfacial reaction zone increased proportionally with increasing heat treatment tim and reaction products formed by interfacial reaction are mainly composed of $Al_3Ni$ and $Al_3Ni_2$ phases. The tensile strength of Ni/AC4C and Ni-Cr/AC4C composite is lower than the matrix metal and this can be explained by the brittle intermetallic compounds formed at the interface of Ni and Ni-Cr reinforcements. But the properies of hardness, wear resistance and thermal expansion are better than the matrix due to the strengthening effect of Ni-Cr porous metals.

  • PDF

MOCVD of GaN Films on Si Substrates Using a New Single Precursor

  • Song, Seon-Mi;Lee, Sun-Sook;Yu, Seung-Ho;Chung, Taek-Mo;Kim, Chang-Gyoun;Lee, Soon-Bo;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.953-956
    • /
    • 2003
  • Hexagonal GaN (h-GaN) films have been grown on Si(111) substrates by metal organic chemical vapor deposition using the azidodiethylgallium methylamine adduct, Et₂Ga(N₃)·NH₂Me, as a new single precursor. Deposition was carried out in the substrate temperature range 385-650 °C. The GaN films obtained were stoichiometric and did not contain any appreciable amounts of carbon impurities. It was also found that the GaN films deposited on Si(111) had the [0001] preferred orientation. The photoluminescence spectrum of a GaN film showed a band edge emission peak characteristic of h-GaN at 378 nm.

Thermal Elasto-Plastic Deformation Analysis of Metal Matrix Composites Considering Residual Stress and Interface Bonding Strength (잔류응력과 계면접합강도를 고려한 금속복합재료의 열탄소성 변형 해석)

  • Kang, Chung-Gil;Seo, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.227-237
    • /
    • 1999
  • As the interface bonding phenomenon between the matrix and the reinforcements has a large effect on the mechanical properties of MMCs, a sugestion of the strength analysis technique considering the residual stress and the interface bonding phenomenon is very important for the design of pans and the estimation of fatigue behavior. In this paper the three dimensional finite element anaysis is performed during the elasto-plastic deformation of the particulate reinforced metal matrix composites. It was analyzed with the volume fractions in view of microscale. Bonding strength. interface separation and matrix void growth between the matrix and the reinforcements will be predicted on deformation under tensile loading. An interface seperation is estimated by the fracture criterion which is a critical value of generalized plastic work per unit volume. The shape of the reinforcement is assumed to be a perfect sphere. And the type of the reinforcement distribution is assumed as FCC array. The thermal residual stress in MMCs is induced by the heat treatment. It is included at the simulation as an initial residual stress. The element birth and death method of the ANSYS program is used for the estimation of the interface bonding strength, void generation and propagation. It is assumed that the fracture in the matrix region begin to occur under the external loading when the plastic work per unit volume is equal to the critical value. The fracture strain will be defined. The experimental data of the extruded $SiC_p$>/606l Al composites are compared with the theoretical results.

  • PDF