• Title/Summary/Keyword: Si particle size

Search Result 623, Processing Time 0.025 seconds

Characteristics of the Dependent Variable due to Changes in the Conditions of the Independent Variable During the Producing of Collets Added with Rice and Dried Shrimp by Single Extruder (Single Extruder를 이용한 마른새우첨가 쌀 Collets 제조 시 독립변수의 조건변화에 따른 종속변수의 특성)

  • JE, Hae-Soo;YOON, Moon-Joo;LEE, Jae-Dong;KANG, Kyung-Hun;PARK, Si-Young;PARK, Jin-Hyo;KIM, Jeong-Gyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1352-1363
    • /
    • 2015
  • This study was carried out to investigate the characteristics of the dependent variables depending on the condition changes of independent variable of the operation and the material during the production of collets added with rice and dried shrimp by using single extruder to utilize as basic data for the manufacture of extrusion collets. A total of 7 independent variables were set up as a raw, 20, 40 and 60 mesh for the powder particle size of rice; 12, 14, 16 and 18% for the moisture content of rice; 2, 4, 6 and 8% for the addition amount of dried shrimp; 90, 95, 100 and $110^{\circ}C$ for the barrel temperature; 210, 280 and 340 rpm for the screw speed; 4, 6, 8 and 10 mm for the discharge port diameter; 30, 40, 50 and 60 kg/h for the input amount of the mixed material. The characteristics of the dependent variables including puffing ratio, moisture content, lightness, uniformity, productivity of collets was to be studied by changing the conditions of the independent variables. As a results of this study, 20 mesh of powder particle size of rice, 14% of moisture content of rice, 4% of addition amount of dried shrimp, $100^{\circ}C$ of barrel temperature, 280 rpm of screw speed, 6 mm of discharge port diameter and 50 kg/h of input amount of mixed material were found to be the most preferable over other independent variables for the production of extrusion collets. In conclusion, it is necessary to set the independent variable in order to produce the high quality collets added with the rice as the main raw material and dried shrimp as the sub-materials.

Preparation and Characterization of Iron Phthalocyanine Thin Films by Vacuum Sublimation (진공증착법을 이용한 철프탈로시아닌 박막의 합성과 그 특성)

  • Jee, Jong-Gi;Lee, Jae-Gu;Hwang, Dong-Uk;Lim, Yoon-Mook;Yang, Hyun-Soo;Ryu, Haiil;Park, Ha-Sun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.644-651
    • /
    • 1999
  • In this experiment the Iron phthalocyanine (FePc) films on Si-wafer and alumina pallet were prepared using vacuum sublimation with conditions of changing reaction time, temperature, and deposition rate. Then, some samples were annealed following annealing. Techniques such as XRD, SEM, and resistance measurement method, were dedicated to characterize the changes of surface structure, phase transformation and electric resistance sensitivity in accordance with change of film thickness. In proportion to the decrease of deposition temperature from $370^{\circ}C$ to $350^{\circ}C$, intensities of (200), (011), (211) and (114) planes of $\alpha$-phase were decreased and (100) plane of $\beta$-phase were appeared. The film thickness were controlled by regulating the volume of precursor material during rapid deposition. As a result, it was observed that crystalline particle size had been increased according to the increase of film thickness and $\alpha$-phase transformed to $\beta$-phase. In consequence of measuring the crystallinity of films annealed between $150^{\circ}C$ and $350^{\circ}C$, $\alpha$- to $\beta$-phase transformation was appeared to begin at $150^{\circ}C$ and completely transformed to $\beta$-phase at $350^{\circ}C$. Electric resistance sensitivity of FePc film to $NO_x$ gas along temperature change of FePc films was observed to be more stable with the decrease of the film thickness.

  • PDF

Comparative Analysis of Heat Sink and Adhesion Properties of Thermal Conductive Particles for Sheet Adhesive (열전도성 입자를 활용한 시트용 점착제의 점착 특성과 방열특성 연구)

  • Kim, Yeong Su;Park, Sang Ha;Choi, Jeong Woo;Kong, Lee Seong;Yun, Gwan Han;Min, Byung Gil;Lee, Seung Han
    • Textile Coloration and Finishing
    • /
    • v.28 no.1
    • /
    • pp.48-56
    • /
    • 2016
  • Improvement of heat sink technology related to the continuous implementation performance and extension of device-life in circumstance of easy heating and more compact space has been becoming more important issue as multi-functional integration and miniaturization trend of electronic gadgets and products has been generalized. In this study, it purposed to minimize of decline of the heat diffusivity by gluing polymer through compounding of inorganic particles which have thermal conductive properties. We used NH-9300 as base resin and used inorganic fillers such as silicon carbide(SiC), aluminum nitride(AlN), and boron nitride(BN) to improve heat diffusivity. After making film which was made from 100 part of acrylic resin mixed hardener(1.0 part more or less) with inorganic particles. The film was matured at $80^{\circ}C$ for 24h. Diffusivity were tested according to sorts of particles and density of particles as well as size and structure of particle to improve the effect of heat sink in view of morphology assessing diffusivity by LFA(Netzsch/LFA 447 Nano Flash) and adhesion strength by UTM(Universal Testing Machine). The correlation between diffusivity of pure inorganic particles and composite as well as the relation between density and morphology of inorganic particles has been studied. The study related morphology showed that globular type had superior diffusivity at low density of 25% but on the contarary globular type was inferior to non-globular type at high density of 80%.

Mineralogical and Physico-chemical Properties of Fine fractions Remained after Crushed Sand Manufacture (국내 화강암류를 이용한 일부 인공쇄석사 제조과정에서 생기는 스러지의 광물.물리화학적 특성)

  • Yoo, Jang-Han;Ahn, Gi-Oh;Jang, Jun-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.355-361
    • /
    • 2006
  • Artificially crushed sands occupy approximately 30 percent of the total consumption in South Korea. The demand for the crushed sands is expected to rise in the future. Most manufacturers use granitic rocks to produce the crushed sands. During the manufacturing process, fine fractions (i.e., sludges or particles smaller than 63 microns) are removed through the process of flocculation. The fine fraction occupies about 15% of the total weight. The sludges are comprised of quartz, feldspars, calcite, and various kinds of clay minerals. Non-clay minerals occupy more than 75 percent of the sluges weight, according to the XRD semi-quantification measurement. Micas, kaolinites, chlorite, vermiculite, and smectites occur as minor constituents. The sludges from Jurassic granites contain more kaolinites and $14{\AA}$-types than those from the Cretaceous ones. The chemical analysis clearly shows the difference between the parent rocks and the sludges in chemical compositions. Much of colored components in the sludges was accumulated as the weathering products. Particle size analysis results show that the sludges can be categorized as silt loam in a sand-silt-clay triangular diagram. This result was for her confirmed by the hydraulic conductivity data. In South Korea, the sludges remained after crushed sand production are classified as an industrial waste because of their impermeability, and which is caused by their high silt and clay fractions.

Influence of the Monitoring Interval and Intake Pattern for the Evaluation of Intake (내부피폭 감시주기 및 섭취형태가 방사성핵종 섭취량 평가에 미치는 영향)

  • Jong-Il Lee;Tae-Young Lee;Si-Young Chang;Jai-Ki Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.1
    • /
    • pp.53-59
    • /
    • 2004
  • A variety of factors such as the pattern of intake (acute or chronic), monitoring interval and the characteristics of the radionuclides could have a significant influence on the estimates for the intake and internal dose. The relative differences of the assessed intakes based on the assumption of an acute intake to that of a chronic intake were evaluated by using the predicted bioassay quantity in the whole body or organs for an acute and chronic intake through the inhalation of $^{125}$ I, $^{137}$ C, $^{235}$ U with the AMAD of 1 ${\mu}{\textrm}{m}$ and 5 ${\mu}{\textrm}{m}$ for the monitoring intervals of 7, 14, 30, 60, 90, 120, 180, 360 days, respectively, The relative difference of the assessed intakes based on the intake pattern is affected by the monitoring interval, radionuclide and absorption type, but the particle size has little influence on the difference of the assessed intakes based on the intake pattern. The maximum monitoring interval, which is defined as the monitoring interval that the relative difference of the assessed intakes based on the assumption of an acute intake to that of a chronic intake is less than 10%, is 60 d for $^{125}$ I with Type F, 180 d for $^{137}$ C with Type F, 90 d for $^{235}$ U with Type M, and 360 d for $^{235}$ U with Type S. It was concluded that an intake pattern has little influence on the estimates of the assessed intake in the case where the monitoring interval is shorter than the maximum monitoring interval for each radionuclide.

  • PDF

Drying Characteristic of High Moisture Coal using a Flash Dryer (기류건조기를 이용한 고수분 석탄의 건조 특성)

  • Kim, Sang Do;Lee, Si Hyun;Rhim, Young Joon;Choi, Ho Kyung;Lim, Jeong Hwan;Chun, Dong Hyuk;Yoo, Ji Ho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.106-111
    • /
    • 2012
  • Drying characteristic of high moisture coal using a 5 kg/hr bench scale flash dryer was investigated. Moisture content and heating value of raw coal as received basis were 29.74 wt% and 4,270 kcal/kg, respectively. Gas inlet temperature and gas inlet flow rate were $400{\sim}600^{\circ}C$ and 10~20 m/sec, respectively. The raw coal was ground and classified to the particle size range of $100{\sim}2,000{\mu}m$. The moisture removal rate of raw coal was dramatically increased with increasing gas inlet temperature and decreasing gas inlet flow rate. The heating value of dried coal was increased to 5,100~5,900 kcal/kg. To examine the chemical change on the surface of high moisture coal during flash drying process, FT-IR spectral analysis was carried out. As a result, major changes in hydroxyl, carboxyl and carbonyl peak was confirmed.

Physical and Chemical Properties of Waste Concrete Powders Originated from the Recycling Process of Waste Concrete (폐콘크리트의 재활용 공정에서 발생되는 폐콘크리트 미립분의 물리.화학적 특성)

  • Kim, Jin Man;Kang, Cheol;Kim, Ha Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.82-89
    • /
    • 2009
  • According to the great city development and the rapid growth of redevelopment project, waste concrete emission has been increased. Waste concrete powder is one of the by-product originated from the recycling of the waste concrete. The more making high quality recycled aggregate to use aggregate for concrete, the more waste concrete powder is producted relatively. Therefore, to realize the total recycling of waste concrete, development of recycling technology for waste concrete powder need very much. This technical note present the discharged process and the various properties of waste concrete powder. As the results, on the average, the maximum particle-size of waste concrete powder is less than $600{\mu}m$, and oven-dry density is less than $2.5g/cm^3$. And waste concrete powder contains more than 50% of $SiO_2$, 30% of CaO and 10% of $Al_2O_3$. Thus qualities of waste concrete powder is lower than those of high quality raw material for concrete. However, if it is processed by grading to the purpose, it will be used as resource of raw materials for construction field.

  • PDF

A Study on Properties of Domestic Fly Ash and Utilization as an Insulation material (국산 Fly Ash의 특성 및 단열재로의 이용에 관한 연구)

  • 박금철;임태영
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.2
    • /
    • pp.135-146
    • /
    • 1983
  • This study is to investigate the properties of domestic fly ash for utilization as data in regard to fly ash which is by-product of domestic coal powder plants and the possibility of utilization as insulation material of domestic fly ash. Composition refractoriness size distribution density contents of hollow particles and crystalline phase were examined as the properties of domestic fly ash. As to the fired test pieces of fly ash by itself that varied contents of hollow particles with four kinds and of the fly ash-clay-saw dust system linear shrinkage bulk density app. porosity compressive strength thermal conductivity and structures were investigated for the possibility of utilization as an insulation material. The results are as follows : 1. The properties of the fly ash I) The constituent particle of the fly ash is spherical and it contains not a few hollow particles (floats by water 0.30-0.50 floats by $ZnCl_2$ aq.(SpG=1.71) 6.97-16.72%). ii) The chemical compositions of fly ash are $SiO_243.9-54.1%$ , $Al_2O_321.0-30.7%$ Ig loss is 7.4-24.1% and the principal of Ig loss is unburned carbon. iii) Fly ash was not suitable to use for mortar and concrete mixture because Ig. loss value is higher than 5% 2. Utilization as insulation material I) The test pieces of original fly ash floats by water floats by ZnCl2 aq(SpG=1.71) p, p t by ZnCl2 aq.(SpG=1.71) that were fired at 110$0^{\circ}C$ represented 0.11-0.18 kcal/mh$^{\circ}$ C as thermal conductivity value. ii) The test pieces which (76.5-85.5) wt% fly ash-(8.5, 9.5) wt% clay-(5.0-15.0) wt% saw dust system(68.0-72.0) wt% fly ash -(17.0-18.0)wt% clay-(10.0-15.0) wt% saw dust system and 59.5 wt% fly ash-25.5 wt% clay-15.0wt% saw dust system were fired at 110$0^{\circ}C$ the thermal conductivity was less than 0.1Kcal/mh$^{\circ}$ C. iii) In view of thermal conductivity and economic aspect insulation materials which added saw dust as blowing agent and clay as inorganic binder are better than that of fly ash as it is or separated hollow fly ash particles. iv) When the saw dust contents increased in the (59.5-90.0) wt% saw dust system and when amount of clay de-creased and firing temperature decreased under the condition of equal addition of saw dust app. porosity increased but bulk density compressive strength and thermal conductivity decreased.

  • PDF

Ultra-high Temperature EM Wave Absorption Behavior for Ceramic/Sendust-aluminosilicate Composite in X-band (X-Band 영역에서의 세라믹/샌더스트-알루미노실리케이트 복합재의 초고온 전자파 흡수 거동)

  • Choi, Kwang-Sik;Sim, Dongyoung;Choi, Wonwoo;Shin, Joon-Hyung;Nam, Young-Woo
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.201-215
    • /
    • 2022
  • This paper presents the development of thin and lightweight ultra-high temperature radar-absorbing ceramic composites composed of an aluminosilicate ceramic matrix-based geopolymer reinforced ceramic fiber and sendust magnetic nanoparticles in X-band frequency range (8.2~12.4 GHz). The dielectric properties with regard to complex permittivity of ceramic/sendust-aluminosilicate composites were proportional to the size of sendust magnetic nanoparticle with high magnetic characteristic properties as flake shape and its concentrations in the target frequency range. The characteristic microstructures, element composition, phase identification, and thermal stability were examined by SEM, EDS, VSM and TGA, respectively. The fabricated total thicknesses of the proposed single slab ultra-high temperature radar absorber correspond to 1.585 mm, respectively, exhibiting their excellent EM absorption performance. The behavior of ultra-high temperature EM wave absorption properties was verified to the developed free-space measurement system linked with high temperature furnace for X-band from 25℃ to 1,000℃.

Composition of Crushed Oyster Shell and its Application Effect on Vegetables (굴껍질분(紛)의 화학성(化學性) 및 작물(作物)에 대한 시용효과(施用效果))

  • Kim, Jong-Gyun;Lee, Han-Saeng;Cho, Jea-Gyu;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.4
    • /
    • pp.350-355
    • /
    • 1995
  • This study was conducted to use oyster shells, which have caused environmental problems in the coastal of Korea, as an agricultural material after processing. Physico-chemical components and neutralizing amount on the Ihyun silt loam of crushed oyster shell and slaked lime were examined. In field experiment, the properties of the soil, growth and yield of lettuce, cabbage, spinach, onion, red pepper and soybean were examined by the treatments of the shell(3.68ton/ha) or the lime (2.76ton/ha) with a randomized block design. Particle size of crushed oyster shell consisted of 73.4% of 1~60mesh and 26.6% larger then 61 mesh and contents of CaO, OM, and $P_2O_5$, etc. were 55.5%, 1.3%, and 0.29%, respectively. The requirement of the shell to neutralize the soil was 130~135% of the lime, but after 24months, it was the same. The application of the shell increased the contents of available $P_2O_5$ and $SiO_2$ exchangeable Ca in used soil. The shell tratment increased the leaf height, leaf width, etc. of the examined plants, and the yields 6~154% according to examined plants, as compared with the nonliminged, indicating that the shell possesses a great potential as an agricultural material with the same effectiveness as the lime.

  • PDF