• Title/Summary/Keyword: Si Sensor

Search Result 784, Processing Time 0.03 seconds

CO Gas Sensing Characteristic of ZnO Thin Film/Nanowire Based on p-type 4H-SiC Substrate at 300℃ (P형 4H-SiC 기판에 형성된 ZnO 박막/나노선 가스 센서의 300℃에서 CO 가스 감지 특성)

  • Kim, Ik-Ju;Oh, Byung-Hoon;Lee, Jung-Ho;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.91-95
    • /
    • 2012
  • ZnO thin films were deposited on p-type 4H-SiC substrate by pulsed laser deposition. ZnO nanowires were formed on p-type 4H-SiC substrate by furnace. Ti/Au electrodes were deposited on ZnO thin film/SiC and ZnO nanowire/SiC structures, respectively. Structural and crystallographical properties of the fabricated ZnO thin film/SiC and ZnO nanowire/SiC structures were investigated by field emission scanning electron microscope and X-ray diffraction. In this work, resistance and sensitivity of ZnO thin film/SiC gas sensor and ZnO nanowire/SiC gas sensor were measured at $300^{\circ}C$ with various CO gas concentrations (0%, 90%, 70%, and 50%). Resistance of gas sensor decreases at CO gas atmosphere. Sensitivity of ZnO nanowire/SiC gas sensor is twice as big as sensitivity of ZnO thin film/SiC gas sensor.

Characteristics of high-temperature single-crystalline 3C-SiC piezoresistive pressure sensors (고온 단결정 3C-SiC 압저항 압력센서 특성)

  • Thach, Phan Duy;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.274-274
    • /
    • 2008
  • This paper describes on the fabrication and characteristics of a 3C-SiC (Silicon Carbide) micro pressure sensor for harsh environment applications. The implemented micro pressure sensor used 3C-SiC thin-films heteroepitaxially grown on SOI (Si-on-insulator) structures. This sensor takes advantages of the good mechanical properties of Si as diaphragms fabricated by D-RIE technology and temperature properties of 3C-SiC piezoresistors. The fabricated pressure sensors were tasted at temperature up to $250^{\circ}C$ and indicated a sensitivity of 0.46 mV/V*bar at room temperature and 0.28 mV/V*bar at $250^{\circ}C$. The fabricated 3C-SiC/SOI pressure sensor presents a high-sensitivity and excellent temperature stability.

  • PDF

The Characteristic Analysis of Thin Film Sensor using The Membrane (Membrane을 이용한 박막센서 특성 분석)

  • 이순우;김상훈;안진호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.37-41
    • /
    • 2002
  • In this research, we investigate the properties of membrane and thin film sensor which is using magnetic resonance properties. we expect to $Si_xN_y$ and SiC materials as membrane materials, we measured thin film stress and properties to find the best membrane fabrication condition. Of the two membrane, $Si_xN_y$ thin film is the better than SiC thin film. because of an adequate tensile stress and lower thermal expansion coefficient as sensor structure layer. After performing deposition and patterning thin film sensor material on $Si_xN_y$, we analyzed the magnetic hysteresis and magnetic resonance frequency of sensor. If the magnetic field which is applied in sensor material is removed, magnetization made by magnetic field is transited to elastic mode. moreover. energy radiation is induced during the transition and voltage generates in sensor by energy radiation. At this moment, If voltage generation period is longer, mechanical vibration is induced and signal is generated by mechanical vibration. we also see that as the increase of thin film sensor' length and width, magnetic resonance frequency is decreased.

  • PDF

A study on CO gas sensing Characteristics of Pt-SiC $SnO_2$-pt-SiC Schottky Diodes (Pt 및 Pt-$SnO_2$를 전극으로 하는 SiC 쇼트키 다이오드의 CO 가스 감응 특성)

  • Kim, C.K.;Noh, I.H.;Yang, S.J.;Lee, J.H.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.805-808
    • /
    • 2002
  • A carbon monoxide gas sensor utilizing Pt-SiC, Pt-SnO2-SiC diode structure was fabricated. Since the operating temperature for silicon devices in limited to 200oC, sensor which employ the silicon substrate can not at high temperature. In this study, CO gas sensor operating at high temperature which utilize SiC semiconductor as a substrate was developed. Since the SiC is the semiconductor with wide band gap. the sensor at above $700^{\circ}C$. Carbon monoxide-sensing behavior of Pt-SiC, Pt-SnO2-SiC diode is systematically compared and analyzed as a function of carbon monoxide concentration and temperature by I-V and ${\Delta}$I-t method under steady-state and transient conditions.

  • PDF

Si PIN Radiation Sensor with CMOS Readout Circuit

  • Kwon, Yu-Mi;Kang, Hee-Sung;Lee, Jung-Hee;Lee, Yong Soo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.73-81
    • /
    • 2014
  • Silicon PIN diode radiation sensors and CMOS readout circuits were designed and fabricated in this study. The PIN diodes were fabricated using a 380-${\mu}m$-thick 4-inch n+ Si (111) wafer containing a $2-k{\Omega}{\cdot}cm$ n- thin epitaxial layer. CMOS readout circuits employed the driving and signal processes in a radiation sensor were mixed with digital logic and analog input circuits. The primary functions of readout circuits are amplification of sensor signals and the generation of the alarm signals when radiation events occur. The radiation sensors and CMOS readout circuits were fabricated in the Institute of Semiconductor Fusion Technology (ISFT) semiconductor fabrication facilities located in Kyungpook National University. The performance of the readout circuit combined with the Si PIN diode sensor was demonstrated.

Fabrication of a SOI hall sensor using Si-wafer direct bonding technology and its characteristics (실리콘기판 직접접합기술을 이용한 SOI 홀 센서의 제작과 그 특성)

  • 정귀상
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.165-170
    • /
    • 1995
  • This paper describes the fabrication and characteristics of a Si Hall sensor fabricated on a SOI (Si-on-insulator) structure. The SOI structure was formed by SDB(Si-wafer direct bonding) technology and the insulator of the SOI structure was used as the dielectrical isolation layer of a Hall sensor. The Hall voltage and sensitivity of the implemented SDB SOI Hall sensors showed good linearity with respect to the applied magnetic flux density and supplied current. The product sensitivity of the SDB SOI Hall sensor was average 600V/A.T and its value has been increased up to 3 times compared to that of bulk Si with buried layer of 10.mu.m. Moreover, this sensor can be used at high-temperature, high-radiation and in corrosive environments.

  • PDF

Chromel-Alumel Thermoelectric Flow Sensor Fabricated on Dielectric(Si3N4/SiO2/Si3N4) Membrane (유전체(Si3N4/SiO2/Si3N4)멤브레인 위에 제작된 크로멜-알루멜 열전 유량센서)

  • Lee, Hyung-Ju;Kim, Jin-Sup;Kim, Yeo-Hwan;Lee, Jung-Hee;Choi, Yong-Moon;Park, Se-Il
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.103-111
    • /
    • 2003
  • A chromel-alumel thermoelectric flow sensor using $Si_3N_4/SiO_2/Si_3N_4$ thermal isolation membrane was fabricated. Temperature coefficient of resistance of thin film Pt-heater was about $0.00397/^{\circ}C$, and Seebeck coefficient of chromel-alumel thermocouple was about $36\;{\mu}V/K$. The sensor showed that thermoelectric voltage decreased as thermal conductivity of gas increased, and $N_2$-flow sensitivity increased as heater voltage increased or the distance between heater and thermocouple decreased. When heater voltage was about 2.5 V, $N_2$-flow sensitivity and thermal response time of the sensor were about $1.5\;mV/sccm^{1/2}$ and 0.18 sec., respectively. Linear range in flow sensitivity of the flow sensor was wider than that of Bi-Sb flow sensor.

Development of High-Sensitivity and Entry-Level Radiation Measuring Sensor Module (고감도 보급형 방사선 측정센서 모듈 개발)

  • Oh, Seung-Jin;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.510-514
    • /
    • 2022
  • In this paper, we propose the development of high-sensitivity low-end radiation measuring sensor module. The proposed measurement sensor module is a scintillator + photomultiplier(SiPM) sensor optimization structure design, amplification and filter and control circuit design for sensor driver, control circuit design including short-distance communication, sensor mechanism design and manufacturing, and GUI development applied to prototypes consists of, etc. The scintillator + photomultiplier(SiPM) sensor optimization structure design is designed by checking the characteristics of the scintillator and the photomultiplier (SiPM) for the sensor structure design. Amplification, filter and control circuit design for sensor driver is designed to process fine scintillation signal generated by radiation with a scintillator using SiPM. Control circuit design including short-distance communication is designed to enable data transmission through MCU design to support short-range wireless communication function and wired communication support. The sensor mechanism design and manufacture is designed so that the glare generated by wrapping a reflective paper (mirroring) on the outside of the plastic scintillator is reflected to increase the efficiency in order to transmit the fine scintillation signal generated from the plastic scintillator to the photomultiplier(SiPM). The GUI development applied to the prototype expresses the date and time at the top according to each screen and allows the measurement unit and time, seconds, alarm level, communication status, battery capacity, etc. to be expressed. In order to evaluate the performance of the proposed system, the results of experiments conducted by an authorized testing institute showed that the radiation dose measurement range was 30 𝜇Sv/h ~ 10 mSv/h, so the results are the same as the highest level among products sold commercially at domestic and foreign. In addition, it was confirmed that the measurement uncertainty of ±7.4% was measured, and normal operation was performed under the international standard ±15%.

Integrated IR Photo Sensor for Display Application (디스플레이 패널에 집적이 가능한 적외선 포토센서)

  • Jeon, Ho-Sik;Heo, Yang-Wook;Lee, Jae-Pyo;Han, Sang-Youn;Bae, Byung-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1164-1169
    • /
    • 2012
  • This paper presents a study of an integrated infrared (IR) photo sensor for display application. We fabricated hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) and hydrogenated amorphous silicon germanium thin film transistor (a-SiGe:H TFT) which were bottom gate structure. We investigated the dependence of a-SiGe:H TFT characteristics on incident wavelengths. We proposed photo sensor which responded to wavelengths of IR region. Proposed pixel circuit of photo sensor was consists of switch TFT and photo TFT, and one capacitor. We developed integrated photo sensor circuit and investigated the performance of the proposed sensor circuit according to the input wavelengths. The developed photo sensor circuit with a-SiGe:H TFT was suitable for IR.

수송기계 엔진용 3C-SiC 마이크로 압력센서의 제작

  • Han, Gi-Bong;Jeong, Gwi-Sang
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.10-13
    • /
    • 2006
  • This paper describes on the fabrication and characteristics of a 3C-SiC (Silicon Carbide) micro pressure sensor for harsh environment applications. The implemented micro pressure sensor used 3C-SiC thin-films heteroepitaxially grown on SOI (Si-on-insulator) structures. This sensor takes advantages of the good mechanical properties of Si as diaphragms fabricated by D-RIE technology and temperature properties of 3C-SiC piezoresistors. The fabricated pressure sensors were tasted at temperature up to $250^{\circ}C$ and indicated a sensitivity of 0.46 mV/V*bar at room temperature and 0.28 mV/V*bar at $250^{\circ}C$. The fabricated 3C-Sic/SOI pressure sensor presents a high-sensitivity and excel lent temperature stability.

  • PDF