• 제목/요약/키워드: Si Particle

검색결과 1,051건 처리시간 0.033초

고강도 $Si_3N_4/SiC$ 구조세라믹스에 관한 연구 (High Strength $Si_3N_4/SiC$ Structural Ceramics)

  • 김병수;김인술;장윤식;박홍채;오기동
    • 한국세라믹학회지
    • /
    • 제30권12호
    • /
    • pp.999-1006
    • /
    • 1993
  • Si3N4(p)-SiC(p) composites were prepared by gas pressure sintering at 190$0^{\circ}C$ for 1 hour. $\alpha$-SiC with average particle size of 0.48${\mu}{\textrm}{m}$ were dispersed from zero to 50vol% in $\alpha$-Si3N4 with average particle size of 0.5${\mu}{\textrm}{m}$. Y2O3-Al2O3 system was used as sintering aids. When 10vol% of SiC was added to Si3N4, optimum mechanical properties were observed; relative density of 98.8%, flextural strength of 930MPa, fracture toughness of 5.9MPa.m1/2 and hardness value of 1429kg/$\textrm{mm}^2$. Grain growth of $\beta$-Si3N4 was inhibited as the amount of added SiC was increased. SiC particles were found inside the $\beta$-Si3N4 intragrains in case of 10, 20 and 30vol%SiC added composites.

  • PDF

Effects of Matrix Material Particle Size on Mullite Whisker Growth

  • Hwang, Jinsung;Choe, Songyul
    • 한국재료학회지
    • /
    • 제31권6호
    • /
    • pp.313-319
    • /
    • 2021
  • Understanding of effects of changes in the particle size of the matrix material on the mullite whisker growth during the production of porous mullite is crucial for better design of new porous ceramics materials in different applications. Commercially, raw materials such as Al2O3/SiO2 and Al(OH)3/SiO2 are used as starting materials, while AlF3 is added to fabricate porous mullite through reaction sintering process. When Al2O3 is used as a starting material, a porous microstructure can be identified, but a more developed needle shaped microstructure is identified in the specimen using Al(OH)3, which has excellent reactivity. The specimen using Al2O3/SiO2 composite powder does not undergo mulliteization even at 1,400 ℃, but the specimen using the Al(OH)3/SiO2 composite powder had already formed complete mullite whiskers from the particle size specimen milled for 3 h at 1,100 ℃. As a result, the change in sintering temperature does not significantly affect formation of microstructures. As the particle size of the matrix materials, Al2O3 and Al(OH)3, decreases, the porosity tends to decrease. In the case of the Al(OH)3/SiO2 composite powder, the highest porosity obtained is 75 % when the particle size passes through a milling time of 3 h. The smaller the particle size of Al(OH)3 is and the more the long/short ratio of the mullite whisker phase decreases, the higher the density becomes.

Al-xSi 합금의 인장특성에 미치는 공정 Si 입자의 파단과 미소기공율의 영향 (Effects of Damage Evolution of Eutectic Si Particle and Microporosity to Tensile Property of Al-xSi Alloys)

  • 이충도
    • 한국주조공학회지
    • /
    • 제41권5호
    • /
    • pp.434-444
    • /
    • 2021
  • 본 연구에서는 미소기공과 Si석출상의 파단으로 구성되는 유효기공 면적분율에 대한 인장특성의 결함민감도 관점에서 Al-Si합금의 인장특성을 공정 Si입자의 분포양상 변화에 대하여 평가하고자 하였다. Al-xSi(x=2,5,8,11)합금의 주방상태 미세조직인 망상구조의 공정 Si입자는 T4처리를 통하여 과립형태로 변형시켰으며, CT분석과 주사전자현미경 관찰을 통하여 미소기공의 분포와 크기를 평가하였다. CT분석과 주사전자현미경의 비교분석을 통하여 인장변형과정에서의 균열성장이 최대 기공율을 포함하는 국부영역에서 발생함을 확인할 수 있었다. 그럼에도 불구하고 이들 분석방법에는 미소기공 인접영역에서의 소성변형집중과 미소기공의 분포양상에 의해 파생되는 실제적인 차이를 포함하기 때문에 정확히 일치된 결과를 얻을 수 없었다. 유효기공 면적분율의 변화에 대한 인장강도와 연신율의 변화는 과립형태보다 망상구조 정출상의 분율변화에 더욱 민감한 의존도를 가진다.

Ethyl Silicate를 고순도 $\beta$-SiC미분말 합성에 관한 연구(I) 반응조건과 $\beta$-SiC의 생성율 및 특성 (A Study on Synthesis of High Purity $\beta$-SiC Fine Particle from Ethylsilicate(I) -Reaction Conditon, Yeild and Properties of $\beta$-SiC-)

  • 최용식;박금철
    • 한국세라믹학회지
    • /
    • 제25권5호
    • /
    • pp.473-478
    • /
    • 1988
  • In order to obtain the high purity $\beta$-SiC powder that possesses the excellent sinterability and is close to the spherical shape, the carbon black was mixed into the composition of Si(OC2H5)4-H2O-NH3-C2H5OH which the monodispersed spherical fine particles is formed the hydrolysis of Ethylsilicate and the mixture was carbonized under an argon atmosphere. Particle shpae, size and the yield of $\beta$-SiC powder were investigated according to the molar ratio of carbon/alkoxide and variations of reaction temperature and reaction time. The results of this study are as follow ; 1) The yield of $\beta$-SiC gained from the reaction for one hour at 150$0^{\circ}C$ almost got near 100% and the particle size of $\beta$-SiC from the reaction for 15 hrs at 150$0^{\circ}C$ was 0.2${\mu}{\textrm}{m}$ on the average and close to the spherical shape agglomerate state. 2) When the molar ratio carbon/alkoxide is over 3.1 and the reaction occurs at 145$0^{\circ}C$ for 5hrs, the carbon content has not an effect on the kind of crystal of product.

  • PDF

솔-젤 공정으로 제조된 SiO2-C 복합 전구체를 사용하여 열탄소환원법에 의한 β-SiC 분말 합성에 금속 Si 첨가가 미치는 영향 (Effects of Metallic Silicon on the Synthsis of β-SiC Powders by a Carbothermal Reduction Using SiO2-C Hybrid Precursor Fabricated by a Sol-gel Process)

  • 조영철;염미래;윤성일;조경선;박상환
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.402-409
    • /
    • 2013
  • The objective of this study was to develop a synthesis process for ${\beta}$-SiC powders to reduce the synthesis temperature and to control the particle size and to prevent particle agglomeration of the synthesized ${\beta}$-SiC powders. A phenol resin and TEOS were used as the starting materials for the carbon and Si sources, respectively. $SiO_2$-C hybrid precursors with various C/Si mole ratios were fabricated using a conventional sol-gel process. ${\beta}$-SiC powders were synthesized by a carbothermal reduction process using $SiO_2$-C hybrid precursors with various C/Si mole ratios (1.6 ~ 2.5) fabricated using a sol-gel process. In this study, the effects of excess carbon and the addition of Si powders to the $SiO_2$-C hybrid precursor on the synthesis temperature and particle size of ${\beta}$-SiC were examined. It was found that the addition of metallic Si powders to the $SiO_2$/C hybrid precursor with excess carbon reduced the synthesis temperature of the ${\beta}$-SiC powders to as low as $1300^{\circ}C$. The synthesis temperature for ${\beta}$-SiC appeared to be reduced with an increase of the C/Si mole ratio in the $SiO_2$-C hybrid precursor by a direct carburization reaction between Si and excess carbon.

B.390 알루미늄 합금의 마모특성에 미치는 초정Si 입자크기와 잔류응력의 영향 (Effect of Primary Si size and Residual Stress on the Wear Properties of B.390 Al Alloys)

  • 김헌주;김성재
    • 열처리공학회지
    • /
    • 제19권1호
    • /
    • pp.20-29
    • /
    • 2006
  • Wear behaviour of B.390 aluminum alloy with different particle sizes of primary Si against a SM45C counterface was studied as a function of wear load and sliding velocity, using pin-on-disk apparatus under dry condition. The wear rate of specimen with fine primary Si particles showed increased wear resistance at high wear load, on the other side wear resistance of coarse primary Si particle size was improved at low wear load. As the compressive residual stress in the matrix increased remarkably by liquid nitrogen(LN) treatment, wear resistance of the LN treated specimen was more excellent than that of T6 treated specimen.

상압에서 열분해법을 이용한 실리콘 입자 제조 (Formation of Silicon Particles Using $SiH_4$ pyrolysis at atmospheric pressure)

  • 우대광;남경탁;김영길;김광수;강윤호;김태성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.126-129
    • /
    • 2007
  • The particle formation using pyrolysis has many advantages over other particle manufacturing techniques. The particles by pyrolysis have relatively uniform size and chemical composition. Also, we can easily produce high purity particles. Thus, we studied the formation of silicon particles by pyrolysis of 50% $SiH_4$ gas diluted in Ar gas. A pyrolysis furnace was used for the thermal decomposition of $SiH_4$ gas at $800^{\circ}C$ and atmospheric pressure. The aerosol flow from furnace is separated into two ways. The one is to the Scanning Mobility Particle Sizer (SMPS) for particle size distribution measurement and the other is to the particle deposition system. The produced silicon particles are deposited on the wafer in the deposition chamber. SEM measurement was used to compare the particle size distribution results from the SMPS. Depending on the experimental conditions, particles of high concentration in the $30\sim80$ nm size range were generated.

  • PDF

N형 FeSi2의 열전특성에 미치는 입자크기 및 성형압력의 영향 (The Effect of Particle Size and Compaction Pressure on the Thermoelectric Properties of n-type FeSi2)

  • 배철훈
    • 한국산학기술학회논문지
    • /
    • 제16권7호
    • /
    • pp.4835-4841
    • /
    • 2015
  • n형 FeSi2의 열전물성에 미치는 입자크기 및 성형압력의 영향에 대해 조사하였다. 입자크기가 다른 출발 분말을 각각 가압성형(성형압력; $70{\sim}220kg/cm^2$) 하였고, 제작한 성형체를 Ar 분위기 1473 K에서 7시간 소결한 후, 반도체상인 ${\beta}$상을 얻기 위해 1103 K에서 100시간 소둔처리 하였다. XRD, SEM 및 EDS를 이용해서 시편들의 미세구조 및 상분석을 행하였다. 동일 시료를 가지고 Ar 분위기 상온~1023 K에서 도전율과 Seebeck 계수를 동시에 측정하였다. 입자크기가 작을수록 소결밀도와 잔존 ${\varepsilon}$-FeSi 금속전도상 증가에 의해 도전율이 상승하였으며, Seebeck 계수는 700~800 K에서 최고값을 나타내었고, 입자크기가 작을수록 잔존 ${\varepsilon}$-FeSi 금속전도상 증가에 의해 감소하였다. 반면에 성형압력의 변화는 도전율 및 Seebeck 계수에 그다지 큰 영향을 미치지 않았다. 결과적으로 power factor는 성형압력 보다 입자크기에 큰 영향을 받았다.

무가압 침투에 의하여 제조된 Al-5Mg-X(Si, Cu, Ti)/SiCp 복합재료의 시효 및 마멸특성에 관한 연구 (A Study on Aging and Wear Behaviors of Al-5Mg-X(Si, Cu, Ti)/SiCp Composites Fabricated by Pressureless Infiltration Method)

  • 우기도;김석원;나홍석;문호정
    • 한국주조공학회지
    • /
    • 제20권5호
    • /
    • pp.300-306
    • /
    • 2000
  • The objective of this work was to investigate the effects of SiC particle size(50, 100 ${\mu}m$) and additional elements such as Si, Cu and Ti on aging behavior in Al-5Mg-X(Si,Cu,Ti)/SiCp composites fabricated by pressureless infiltration method using hardness and wear test, scanning electron microscopy(SEM) and differential scanning calorimetry(DSC). The peak aging time in Al-5Mg-X(Si, Cu, Ti)/SiCp(50, 100 ${\mu}m$) composites is shorter than Al-5Mg-0.3Si alloy.The peak aging time of 50 ${\mu}m$ SiC particle reinforced Al-5Mg-X(Si,Cu,Ti) composites is shorter than those of 100 ${\mu}m$ SiC particle reinforced of Al-5Mg-X(Si,Cu,Ti) composites. The Al-5Mg-0.3Si-0.1Cu-0.1Ti/SiCp(50 ${\mu}m$) composites aged at $180^{\circ}C$ has higher hardness and better wear resistance than any other aged composite.The aging effect is promoted by the addition of Si and Cu in Al-5Mg/SiCp composites, so the wear resistance of Al-5Mg/SiCp composites with Si and Cu elements is enhanced by the aging treatment.

  • PDF

열전지 음극재용 Li-Si 원료의 성형성에 미치는 입자크기와 바인더첨가 효과 (Effects of Particle Size and Binder Phase Addition on Formability of Li-Si Alloy Powder for Thermal Battery Anode)

  • 류성수;김희식;김성원;김형태;정해원;이성민
    • 한국분말재료학회지
    • /
    • 제21권5호
    • /
    • pp.331-337
    • /
    • 2014
  • The effects of particle size of Li-Si alloy and LiCl-KCl addition as a binder phase for raw material of anode were investigated on the formability of the thermal battery anode. The formability was evaluated with respect to filling density, tap density, compaction density, spring-back and compressive strength. With increasing particle size of Li-Si alloy powder, densities increased while spring-back and compressive strength decreased. Since the small spring-back is beneficial to avoiding breakage of pressed compacts, larger particles might be more suitable for anode forming. The increasing amount of LiCl-KCl binder phase contributed to reducing spring-back, improving the formability of anode powder too. The control of particle size also seems to be helpful to get double pressed pellets, which consisted of two layer of anode and electrolyte.