• Title/Summary/Keyword: Si Particle

Search Result 1,051, Processing Time 0.027 seconds

Microstructure of Squeeze Cast AC4A $Al/Al_2O_3+SiC_p$ Hybrid Metal Matrix Composite (용탕단조한 AC4A $Al/Al_2O_3+SiC_p$ 하이브리드 금속복합재료의 미세조직과 기계적 성질)

  • Kim, Min-Soo;Cho, Kyung-Mox;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.14 no.3
    • /
    • pp.258-266
    • /
    • 1994
  • AC4A $Al/Al_2O_3+SiC_p$ hybrid composites were fabricated by the squeeze infiltration technique. Effect of applied pressure, volume fraction of reinforcement($Al_2O_3$ and SiC) and SiC particle size($4.5{\mu}m$, $6.5{\mu}m$ and $9.3{\mu}m$) on the solidification microstructure of the hybrid composites were examined. Mechanical properties were estimated preliminarly by fractographic observation, hardness measurement and wear test. Results show that the microstructure of the hybrid composites were quite satisfactory, namely revealing relatively uniform distribution of reinforcements and refined matrix. Some aggregation of SiC particle caused by particle pushing was observed especially in the hybrid composites containg in fine particle($4.5{\mu}m$). Refined matrix was attributed to applied pressure and increased nucleation sites with addition of reinforcements. Fractured facet also revealed finer for the hybrid composites possibly due to refined matrix. Hardness and wear resistance increased with volume fraction of reinforcements. For hybrid composites with $9.3{\mu}m$ SiC, hardness was somewhat lower and wear resistance higher than other composites.

  • PDF

Variation of Cone Crack Shape and Impact Damage According to Impact Velocity in Ceramic Materials (세라믹에서 충격속도에 따른 충격손상 및 콘크랙 형상의 변화)

  • Oh, Sang-Yeob;Shin, Hyung-Seop;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.383-388
    • /
    • 2001
  • Effects of particle property variation of cone crack shape according to impact velocity in silicon carbide materials were investigated. The damage induced by spherical impact having different material and size was different according to materials. The size of ring cracks induced on the surface of specimen increased with increase of impact velocity within elastic contact conditions. The impact of steel particle produced larger ring cracks than that of SiC particle. In case of high impact velocity, the impact of SiC particle produced radial cracks by the elastic-plastic deformation at impact regions. Also percussion cone was formed from the back surface of specimen when particle size become large and its impact velocity exceeded a critical value. Increasing impact velocity, zenithal angle of cone cracks in SiC material was linearly decreasing not effect of impact particle size. An empirical equation, $\theta=\theta_{st}-\upsilon_p(180-\theta_{st})(\rho_p/\rho_s)^{1/2}/415$, was obtained from the test data as a function of quasi-static zenithal angle of cone crack($\theta_{st}$), the density of impact particle(${\rho}_p$) and specimen(${\rho}_s$). Applying this equation to the another materials, the variation of zenithal angle of cone crack could be predicted from the particle impact velocity.

  • PDF

Tribological Properties of Reaction-Bonded SiC/Graphite Composite According to Particle Size of Graphite (반응소결 SiC/Graphite 복합체에서 Graphite 입자의 크기에 따른 마찰마모특성)

  • Baik, Yong-Hyuck;Seo, Young-Hean;Choi, Woong;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.854-860
    • /
    • 1997
  • The tribological property of ceramics is very important for use in seal rings, pump parts, thread guides and mechanical seal, etc. In the present study, which RBSC/graphite composites were manufactured by adding graphite powders with different particle sizes to mixtures of SiC powder, metallic silicon, carbon black and alumina, effects on the tribological property of each RBSC/graphite composite was investigated in accordance with the particle size of the added graphite powder. The water absorption, the bending strength and the resistance for the friction and wear were measured, and the crystalline phase and the microstructure were respectively examined by using XRD and SEM. In case that the particle size of the graphite powder was fine(2${\mu}{\textrm}{m}$), the formation of $\beta$-SiC was accelerated, thereby making the increase of the bending strength and the decrease of the water absorption, but no improvement for the tribological properties. Furthermore, in case that the particle size of the graphite powder was some large(88~149${\mu}{\textrm}{m}$), the formation of $\beta$-SiC was not accelerated, to thereby make the decrease of the bending strength and the increase of the water absorption, but the improvement for the tribological property of only the composite having the graphite powder of 20 vol%. In addition, in case that the particle size distribution of the graphite powder was large (under 53 ${\mu}{\textrm}{m}$), there was no improvement for every properties. However, the composites, which the graphite powder with the particle size of 53~88 ${\mu}{\textrm}{m}$ was added in 10~15 vol%, had the most increased resistance for the friction and wear which show the worn out amount of 0.4~0.6$\times$10-3 $\textrm{cm}^2$, and the value of the bending strength is 380~520 kg/$\textrm{cm}^2$.

  • PDF

Growth of Elongated Grains in $\alpha$'-Sialon Ceramics ($\alpha$'-Sialon 세라믹스에서의 주상형 입자성장)

  • 신익현
    • Journal of Powder Materials
    • /
    • v.6 no.3
    • /
    • pp.246-250
    • /
    • 1999
  • The effects of the ${\beta}-Si_3N_4$ starting particle size and $\alpha$/$\beta$ phase transformation during sintering process on the microstructure evolution of Yttrium $\alpha$-Sialon ceramics were investigated. As-received ${\beta}-Si_3N_4$ powder (mean particle size: 0.54$\mu$m) and classified ${\beta}-Si_3N_4$ powder(mean particle size: $0.26\mu{m}$) were used as starting powders. With decreasing the starting particle size, the growth of elongated grains was enhanced, which resulted in the whisker -like microstructure with elongated grains. These results were discussed in relation to the two-dimensional nucleation and growth theory. In the specimen heat treated at $1600^{\circ}C$ for 10h before sintering at $1950^{\circ}C$for 1h under 40atm(2-step sintering), the grain size was smaller than of the 1-step sintering at 195$0^{\circ}C$ for 1h. However, bimodal microstructure evolution were not not remarkable in both sample, which is ascribed to the $\alpha$-phase contents existing in ${\beta}-Si_3N_4$ starting powder.

  • PDF

Effect of SiC mean particle size on mechanical properties and microstructure of $Si_{3}N_{4}/SiC$ nanocomposites (SiC 입자크기가 $Si_{3}N_{4}/SiC$ 초미립복합재료의 기계적 특성과 미세구조에 미치는 영향)

  • 황광택;김창삼;정덕수;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.392-398
    • /
    • 1996
  • $Si_{3}N_{4}/SiC$ nanocomposites reinforced with tow different mean particle size were fabricated by hot press. Grain growth of matrix gran was inhibited by adding of SiC particles, and then number of equiaxed and fine grains were increased. The effect of grain growth inhibition was higher in the nanocomposites dispersed small size SiC. herefore fracture strength and hardness were increased, but fracture toughness was decreased in small size SiC dispersed samples.

  • PDF

Effect of Si Particle Size on the Thermal Properties of Hyper-eutectic Al-Si Alloys (과공정 Al-Si 합금의 열팽창 특성에 미치는 Si 입자 크기의 영향)

  • Kim, Chul-Hyun;Joo, Dae-Heon;Kim, Myung-Ho;Yoon, Eui- Pak;Yoon, Woo-Young;Kim, Kwon-Hee
    • Journal of Korea Foundry Society
    • /
    • v.23 no.4
    • /
    • pp.195-203
    • /
    • 2003
  • Hyper-eutectic Al-Si alloy is used much to automatic parts and material for the electronic parts because of the low coefficient of thermal expansion, superior thermal stability and superior wear resistance. In this work, A390 alloy specimens were fabricated for control of the Si particle size by various processes, such as spray-casting, permanent mold-casting and squeeze-casting. To minimize the effect of microporosity of the specimens, hot extrusion was carried out under equal condition. Each specimens were evaluated tensile properties at room temperature and thermal expansion properties in the range from room temperature to 400$^{\circ}C$. Ultimate tensile strength and elongation of the spray-cast and extruded specimens which have fine and well distributed Si particles were improved greatly compare to the permanent mold-cast and extruded ones. Specimens which have finer Si particles showed higher ultimate tensile strength and elongation than those having large Si particle size, and coefficient of thermal expansion of the specimens increased linearly with Si particle size. In case of the repeated high temperature exposures, thermal expansion properties of the spray-cast and extruded specimens were found to be more stable than those of the others due to the effect of fine and well distributed Si particles.

Tribology of Clay Bonded Silicon Carbide

  • Lee, Kyunghee;Kim, Honggi
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.226-230
    • /
    • 1996
  • A small amount of fine particle graphite was added to $\alpha$-SiC and $\beta$-SiC having certain particle distributions, and they were mixed clay and frit. After forming, they were sintered at 140$0^{\circ}C$ for 3 hours. Tribological properties of sintered $\alpha$-SiC-$\beta$-SiC-graphite-clay (frit) system showed that kinetic friction coefficient was 0.108, specific wear rate was 1.3${\times}10^-8\;mm^2$.$kgf^1$, and torque was 0.01kgf.cm at the wrench torque of 100 kgf.cm.

  • PDF

Development of mass aerosol particle generator and fabrication of commercial anti-viral air filter (대용량 입자 발생 장치 개발 및 이를 이용한 항바이러스 공조용 공기필터 제조)

  • Park, Dae Hoon;Joe, Yun Haeng;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.151-159
    • /
    • 2016
  • Since airborne viruses have been known to aggravate indoor air quality, studies on development of anti-viral air filter increase recently. In this study, a mass aerosol particle generator for coating a commercial air filter (over $300{\times}300mm^2$) was built, and evaluated by comparing a commercial particle generator. Then, via this device, a commercial air filter was coated with anti-viral material ($SiO_2-Ag$ nanoparticles in this study), so fabrication of commercial anti-viral air filter was performed and the pressure drop, filtration efficiency, and anti-viral ability of the filter were evaluated against aerosolized bacteriophage MS2 in a continuous air flow condition. The result showed that the particle generation of the new generator was more than about 8.5 times over which of the commercial one. Consequently, $SiO_2-Ag$ particle coating on a filter does not have significant effects on the filtration efficiency and pressure drop with different areas, and the average anti-viral efficiency of the $SiO_2-Ag$ filter was about 92% when the coating areal density was $1.0{\times}10^{12}particles/m^2$.

An experiment of the particle deposition on a circular cylinder in a laminar flow (원관 주위 유하 액막에 의한 관 외벽에서의 입자 부착에 대한 실험)

  • 정종수;이윤표;정기만;박찬우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.113-119
    • /
    • 2000
  • An experimental study has been carried out in order to investigate on a particle deposition on a circular cylinder surface. The present study is focused on the particulate fouling occurring in a heat exchanger for a seawater desalinization, in a laminar flow over circular cylindrical tubes. The objective is to investigate how NaCl concentration influences the $SiO2$ particle deposition on the surface of a glass circular cylinder. The NaCl concentration was changed from 0 g/L to 40 g/L. As the experimental results of $SiO2$ particle which is deposited on the glass circular cylinder surface showed, particle deposition rate per unit time increases rapidly with the increase of NaCl concentration between 0 g/L and 15 g/L. After the maximum of particle deposition rate was found at the NaCl concentration of 15 g/L, particle deposition rate remains unchanged or decreases gradually with the NaCl concentration from 15 g/L to 40 g/L. Also the $SiO2$ deposition rate of particles does not have serious variations with the position at present glass surface.

  • PDF

Turbidimetric Measurement for On-line Monitoring of SiO2 Particles

  • Kim, In-Sook;Kim, Yang-Sun;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.801-805
    • /
    • 2004
  • In this work, the fundamental study of on-line monitoring of $SiO_2$ particles in the size range of 40 nm to 725 nm was carried out using turbidimetry. The size of particle was measured using a field emission scanning electron microscope (FE-SEM). The factors affecting on the turbidity were discussed, for example, wavelength, size, and concentration. In order to observe the dependence of turbidity on the wavelength, a turbidimetric system equipped with charged coupled detector (CCD) was built. The shape of the transmitted peak was changed and the peak maximum was shifted to the red when the concentration of particle was increased. This result indicates that the turbidity is related to the wavelength, which corresponds to the characteristic of the Mie extinction coefficient, Q, that is a function of not only particle diameter and refractive index but also wavelength. It is clear that a linear calibration curve for each particle in different size can be obtained at an optimized wavelength.