• Title/Summary/Keyword: Si PIN diode sensor

Search Result 8, Processing Time 0.02 seconds

Si PIN Radiation Sensor with CMOS Readout Circuit

  • Kwon, Yu-Mi;Kang, Hee-Sung;Lee, Jung-Hee;Lee, Yong Soo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.73-81
    • /
    • 2014
  • Silicon PIN diode radiation sensors and CMOS readout circuits were designed and fabricated in this study. The PIN diodes were fabricated using a 380-${\mu}m$-thick 4-inch n+ Si (111) wafer containing a $2-k{\Omega}{\cdot}cm$ n- thin epitaxial layer. CMOS readout circuits employed the driving and signal processes in a radiation sensor were mixed with digital logic and analog input circuits. The primary functions of readout circuits are amplification of sensor signals and the generation of the alarm signals when radiation events occur. The radiation sensors and CMOS readout circuits were fabricated in the Institute of Semiconductor Fusion Technology (ISFT) semiconductor fabrication facilities located in Kyungpook National University. The performance of the readout circuit combined with the Si PIN diode sensor was demonstrated.

2.2 “ QVGA LTPS LCD Panel integrated with Ambient light Sensor

  • Weng, Chien-Sen;Chao, Chih-Wei;Tseng, Hung Wei;Peng, Chia-Tien;Lin, Kun-Chih;Gan, Feng-Yuan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1319-1322
    • /
    • 2007
  • Planar PIN photodiode is compatible with LTPS process, and its fabrication requires no additional manufacturing process. In this study we design the optimum dimension of PIN diodes with two nitride layers to improve the efficiency of PIN diodes. The PIN photo sensor shows very good sensitivity to ambient light illuminance.

  • PDF

Development of a neutron Dosimeter using PIN diode (핀(PIN) 다이오드 소자를 이용한 중성자 측정장치 개발)

  • Lee, Seung-Min;Lee, Heung-Ho;Lee, Nam-Ho;Kim, Seung-Ho;Yeo, Jin-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2522-2525
    • /
    • 2001
  • Si PIN diodes are subject to be damaged from the exposure of fast neutron by displacement of Si lattice structure. The defects are effective recombination centers for carriers which migrate through the base region of the PIN diode when forward voltage is applied. It causes an increase in current and a decrease in resistivity of the diode. This paper presents the development of a neutron sensor based on displacement damage effect. PIN diodes having various structures were made bymicro-fabrication process, and neutron beam test was performed to identify neutron damage effect to the diode. From a result of the test, it was shown that the forward voltage drop of the diode, at a constant current, has good linearity for neutron dosage. Also it was found that the newton dosage can be measured by the pin diode neutron dosimeter with constant current power.

  • PDF

Development of a Fast Neutron Detector (속중성자 탐지용 반도체 소자 개발)

  • 이남호;김승호;김양모
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.545-552
    • /
    • 2003
  • When a Si PIN diode is exposed to fast neutrons, it results in displacement damage to the Si lattice structure of the diode. Defects induced from structural dislocation become effective recombination centers for carriers which pass through the base of a PIN diode. Hence, increasing the resistivity of the diode decreases the current for the applied forward voltage. This paper involves the development of a neutron sensor based on the phenomena of the displacement effect damaged by neutron exposure. The neutron effect on the semiconductor was analyzed. Several PIN diode arrays with various thickness and cross-section area of the intrinsic layer(I layer) were fabricated. Under irradiation tests with a neutron beam, the manufactured diodes have a good linearity to neutron dose and show that the increase of thickness of I layer and the decrease of cross-section of PIN diodes improve the sensitivity. Newly developed PIN diodes with thicker I layer and various cross section, were retested and then showed the best neutron sensitivity at the condition that the I layer thickness was similar to a side length. On the basis of two test results, final discrete PIN diodes with a rectangular shape were manufactured and the characteristics as neutron detectors were analyzed through the neutron beam test using on-line electronic dosimetry system. Developed PIN diode shows a good linearity as dosimetry in the range of 0 to 1,000cGy(Tissue) and its neutron sensitivity is 13mV/cGy at constant current of 5mA, that is three times higher than that of commercially available neutron detectors. And the device shows little dependency on the orientation of the neutron beam and a considerable stability in annealing test for a long period.

Development of a real time neutron Dosimeter using semiconductor (반도체형 실시간 전자적 선량계 개발)

  • Lee, Seung-Min;Lee, Heung-Ho;Lee, Nam-Ho;Kim, Seung-Ho;Yeo, Jin-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.754-757
    • /
    • 2000
  • Si PIN diodes are subject to be damaged from the exposure of fast neutron by displacement of Si lattice structure. The defects are effective recombination centers for carriers which migrate through the base region of the PIN diode when forward voltage is applied. It causes an increase in current and a decrease in resistivity of the diode. This paper presents the development of a neutron sensor based on displacement damage effect. PIN diodes having various structures were made by micro-fabrication process, and neutron beam test was performed to identify neutron damage effect to the diode. From a result of the test, it was shown that the forward voltage drop of the diode, at a constant current, has good linearity for neutron dosage. Also it was found that the newton dosage can be measured by the pin diode neutron dosimeter with constant current power.

  • PDF

A Parametric Study of Pulsed Gamma-ray Detectors Based on Si Epi-Wafer (실리콘 에피-웨이퍼 기반의 펄스감마선 검출센서 최적화 연구)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Jeong, Sang-Hun;Kim, Jong-Yeol;Cho, Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1777-1783
    • /
    • 2014
  • In this paper, we designed and fabricated a high-speed semiconductor sensor for use in power control devices and analyzed the characteristics with pulsed radiation tests. At first, radiation sensitive circular Si PIN diodes with various diameters(0.1 mm ~5.0 mm) were designed and fabricated using Si epitaxial wafer, which has a $42{\mu}m$ thick intrinsic layer. The reverse leakage current of the diode with a radius of 2 mm at a reverse bias of 30 V was about 20.4 nA. To investigate the characteristic responses of the developed diodes, the pulsed gamma-radiation tests were performed with the intensity of 4.88E8 rad(Si)/sec. From the test results showing that the output currents and the rising speeds have a linear relationship with the area of the sensors, we decided that the optimal condition took place at a 2 mm diameter. Next, for the selected 2 mm diodes, dose rate tests with a range of 2.47E8 rad(Si)/sec to 6.21E8 rad(Si)/sec were performed. From the results, which showed linear characteristics with the radiation intensity, a large amount of photocurrent over 60mA, and a high speed response under 350ns without saturation, we can conclude that the our developed PIN diode can be a good candidate for the sensor of power control devices.

Characterization of Active Pixel Switch Readout Circuit by SPICE Simulation (능동픽셀센서 구동회로의 SPICE 모사 분석)

  • Nam, Hyoung-Gin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.49-52
    • /
    • 2007
  • Characteristics of an active pixel switch readout circuit were studied by SPICE simulation. A simple readout circuit consists of an operation amplifier, a diode, and a down-counter was suggested, and its successful operation was verified by showing that the differences in the detected signal intensity are accordingly converted to modulation of the voltage pulses generated by the comparator. A scheme to use these pulses to generate the original image was also put forward.

  • PDF

A Study on the Fiber-Optic Voltage Sensor Using EMO-BSO (EOM-BSO 소자를 이용한 광전압센서에 관한 연구)

  • Kim, Yo-Hee;Lee, Dai-Young
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.119-125
    • /
    • 1990
  • This paper describes fiber optic voltage sensor using EOM-BSO (Electro-Optic Modulator-Bismuth Silicon Oxcide). Transceiver has an electical/optical converter and an optical/electrical converter which consist of light emitting diode, PIN-PD, and electronic circuits. Multimode fiber cable of $100/140{\mu}m$ core/clad diameter is used for connecting the transceiver to fiber cable and fiber optic voltage sensor. Before our experiments, by applying the Maxwell equations and wave equations, We derive matrix equation on wave propagation in the BSO single crystal. And also we derive optimal equation on intensity modulation arising through an analyzer. According to experi-mental results, fiber optic voltage sensor has maximum $2.5{\%}$ error within the applied AC voltage of 800V. As the applied voltage increases, saturation values of voltage sensor also increase. This phenomenon is caused by optical rotatory power of BSO single crystal. And temperature dependence of sensitivity for fiber optical rotatory power of BSO single crystal. And temperature dependence of sensitivity for fiber optic voltage sensor in the temperature range from$-20^{\circ}C\to\60^{\circ}C$ are measured within ${\pm}0.6{\%}$. And frequency characteristics of the voltage sensor has good frequency characteristics from DC to 100kHz.

  • PDF