• Title/Summary/Keyword: Si/Al Ratio

Search Result 611, Processing Time 0.027 seconds

Synthesis of Zeolite from Waste LCD Panel Glass (폐 LCD 패널유리를 이용한 제올라이트의 합성)

  • Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.521-528
    • /
    • 2017
  • To find a recycling method for waste liquid crystal display (LCD) panel glasses, we investigated the synthesis process of zeolite with an ion exchange ability by hydrothermal reaction using waste LCD panel glass as a raw material. It was shown that the waste LCD panel glass can be used as a raw material for the production of zeolites having the ion exchange ability. Following conditions for the synthesis of the zeolite with an ion exchange ability were required : the molar ratio of Si to Al components of the waste LCD glass needs to be 2.0 to 2.8, and the temperature of $100^{\circ}C$ and reaction time of 12 hours are needed for the hydrothermal reaction. Based on the required conditions previously mentioned, the A type zeolite was synthesized when the molar ratio of the Si to Al component was 2.0, and the P type zeolite was produced when the molar ratio was 2.8. The type A zeolite synthesized by using the waste LCD panel glass showed a good ion exchange ability and heavy metal adsorption ability. Also, an excellent ion exchange capacity was observed as the crystal phase grows stably in a cubic phase.

SiAlON Bulk Glasses and Their Role in Silicon Nitride Grain Boundaries: Composition-Structure-Property Relationships

  • Hampshire, Stuart;Pomeroy, Michael J.
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.301-307
    • /
    • 2012
  • SiAlON glasses are silicates or alumino-silicates, containing Mg, Ca, Y or rare earth (RE) ions as modifiers, in which nitrogen atoms substitute for oxygen atoms in the glass network. These glasses are found as intergranular films and at triple point junctions in silicon nitride ceramics and these grain boundary phases affect their fracture behaviour. This paper provides an overview of the preparation of M-SiAlON glasses and outlines the effects of composition on properties. As nitrogen substitutes for oxygen in SiAlON glasses, increases are observed in glass transition temperatures, viscosities, elastic moduli and microhardness. These property changes are compared with known effects of grain boundary glass chemistry in silicon nitride ceramics. Oxide sintering additives provide conditions for liquid phase sintering, reacting with surface silica on the $Si_3N_4$ particles and some of the nitride to form SiAlON liquid phases which on cooling remain as intergranular glasses. Thermal expansion mismatch between the grain boundary glass and the silicon nitride causes residual stresses in the material which can be determined from bulk SiAlON glass properties. The tensile residual stresses in the glass phase increase with increasing Y:Al ratio and this correlates with increasing fracture toughness as a result of easier debonding at the glass/${\beta}-Si_3N_4$ interface.

Formation of Solid Solution and Microstructure in Processureless sintered SiC-AlN Composite (상압소결에 의하여 제조된 SiC-AlN 복합체에서의 고용체 형성과 미세구조)

  • Lee, Jong-Kook;Kim, Duk-Jun;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.785-792
    • /
    • 1996
  • Formation of Solid Solution and Microstructure in Processureless sintered SiC-AlN compo-site using oxides as a sintering aid at 185$0^{\circ}C$ and 195$0^{\circ}C$ Regardless of SiC/AlN ratio in composition most of sintered specimens showed he complex structure mixed with 2H solid solution and SiC particles. High sintering temperature and large AlN content in starting composition enhanced the formation of 2H solid solution in sintered specimen 2H solid solution showed the spherical shape and core-rim structure. AlN content in the core is higher than that in the rim but SiC content . The size of 2H solid solution on fracture showed the transgranular fracture mode compared with the dispersed SiC particles which showed the intergranular fracture mode.

  • PDF

Effect of Laser Ablation on Rear Passivation Stack for N-type Bifacial Solar Cell Application (N형 양면 수광 태양전지를 위한 레이저 공정의 후면 패시베이션 적층 구조 영향성)

  • Kim, Kiryun;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.262-266
    • /
    • 2020
  • In this paper, we investigated the effect of the passivation stack with Al2O3, hydrogenated silicon nitride (SiNx:H) stack and Al2O3, silicon oxynitride (SiONx) stack in the n type bifacial solar cell on monocrystalline silicon. SiNx:H and SiONx films were deposited by plasma enhanced chemical vapor deposition on the Al2O3 thin film deposited by thermal atomic layer deposition. We focus on passivation properties of the two stack structure after laser ablation process in order to improve bifaciality of the cell. Our results showed SiNx:H with Al2O3 stack is 10 mV higher in implied open circuit voltage and 60 ㎲ higher in minority carrier lifetime than SiONx with Al2O3 stack at Ni silicide formation temperature for 1.8% open area ratio. This can be explained by hydrogen passivation at the Al2O3/Si interface and Al2O3 layer of laser damaged area during annealing.

EFFECT OF ADDED Si ON DENSIFICATION OF Ni-AI INTERMETALLIC COATING ON SPHEROIDAL GRAPHITE CAST IRON SUBSTRATES

  • Kim, Tetsuro ata;Keisuke Uenishi;Akira Ikenaga;Kojiro F. Kobayashi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.726-731
    • /
    • 2002
  • Reaction synthesis is a process to form ceramics, intermetallics and their composites from elemental powder mixture. Application of this process to a surface modification techniques has a possibilities to enable the process at a lower temperature or for a shorter time, although synthesized materials are likely to include voids and unreacted elements. This paper intend to examine the effect of Si addition to the mixture of Al and Ni on the densification of synthesized Ni-Al intermetallic compounds and to evaluate the surface properties of obtained coatings. By the Si addition, exothermic reaction temperature to form Ni-Al intermetallic was lowered to be below the melting point of Al. Si soluted $Al_3$Ni$_2$, $Al_3$Ni and $Al_{6}$Ni$_3$Si were mainly formed in the coating layer when powder mixture was heated to 973K for 300s. Besides, densification was enhanced by increasing hot press pressure, Si additions and heating rate. When the composition of eutectic Al-Si reaches 78%, void ratio of sintered compact reduced to 0.4%. It is caused by higher flowability of Al-Si liquid phase generated and its infiltration into the void. Since the hardness of NiAl(Si) compound (about 600HV) formed in the coating layer is higher than that of Ni-Al compound (about 400HV), coating layer with high density and superior wear property is obtained by hot press using reaction synthesis from Al-Ni-Si powder mixture.

  • PDF

Effect of SiO$_2/Al_2O_3$ Ratio of HZSM-5 Catalyst on the Synthesis of Methyl tert-butylether (Methyl tert-Butylether 合成에 미치는 HZSM-5 觸媒의 SiO$_2/Al_2O_3$ 比의 영향)

  • Geon-Joong Kim;Wha-Seung Ahn;Byung-Rin Cho;Lee-Mook Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.135-142
    • /
    • 1989
  • Methyl tert-butyl ether(MTBE) was synthesized from vapor phase reaction of methanol with iso-butylene over HZSM-5 catalysts, and effects of SiO$_2/Al_2O_3$ ratio in the HZSM-5 catalysts and reaction conditions on products distribution have been examined. Acid strength and acid type of each catalyst with different SiO$_2/Al_2O_3$ ratio were measured using pyridine adsorption followed by temperature programmed desorption(TPD) and IR analysis. Reactants and products adsorption characteristics on different acid sites have also been examined. As the SiO$_2/Al_2O_3$ ratio of HZSM-5 catalyst was increased, selectivity to MTBE was improved as a result of decrease in dimethylether(DME) formation at the strong acid sites. Conversion and selectivity to MTBE were also greatly enhanced as $i-C_4H_8/CH_3OH$ reactant ratio was increased, and overall about 80$^{\circ}$C was adequate for the MTBE synthesis. The properties of deposited coke on spent catalysts were examined by TG, DTA and IR spectrum analysis, indicating the amount of the coke deposit in the order of HY > H-Mordenite > HZSM-5. Even if the coke deposited on H-Mordenite was little more in amount than to that on HZSM-5, the former deactivated quickly due to its non-interconnected channel structure. For HY, owing to its lange pore size, significant $i-C_4H_8$ polymerization was occured, and rapid deactivation and severe coke formation has resulted within few hours.

  • PDF

Influence of α-SiC Seed Addition on Spark Plasma Sintering of β-SiC with Al-B-C: Microstructural Development (Al-B-C 조제 β-SiC의 스파크 플라즈마 소결에 미치는 α-SiC seed 첨가 영향: 미세 구조 변화)

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Lee, Sang-Woo
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.13-22
    • /
    • 2010
  • The unique features of spark plasma sintering process are the possibilities of a very fast heating rate and a short holding time to obtain fully dense materials. $\beta$-SiC powder with 0, 2, 6, 10 wt% of $\alpha$-SiC particles (seeds) and 4 wt% of Al-B-C (sintering aids) were spark plasma sintered at $1700-1850^{\circ}C$ for 10 min. The heating rate, applied pressure and sintering atmosphere were kept at $100^{\circ}C/min$, 40 MPa and a flowing Ar gas (500 CC/min). Microstructural development of SiC as function of seed content and temperature during spark plasma sintering was investigated quantitatively and statistically using image analysis. Quantitative image analyses on the sintered SiC ceramics were conducted on the grain size, aspect ratio and grain size distribution of SiC. The microstructure of SiC sintered up to $1700^{\circ}C$ consisted of equiaxed grains. In contrast, the growth of large elongated SiC grains in small matrix grains was shown in sintered bodies at $1750^{\circ}C$ and the plate-like grains interlocking microstructure had been developed by increasing sintering temperature. The introduction of $\alpha$-SiC seeds into $\beta$-SiC accelerated the grain growth of elongated grains during sintering, resulting in the plate-like grains interlocking microstructure. In the $\alpha$-SiC seeds added in $\beta$-SiC, the rate of grain growth decreased with $\alpha$-SiC seed content, however, bulk density and aspect ratio of grains in sintered body increased.

FE-Simulation on drawing process of $Al-1\%Si$ bonding wire considering influence of fine Si particle (미세 Si 입자의 영향을 고려한 $Al-1\%Si$ 본딩 와이어의 신선공정해석)

  • Hwang W. H.;Moon H. J.;Ko D. C.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.393-396
    • /
    • 2005
  • This paper is concerned with the drawing process of $Al-1\%Si$ bonding wire. In this study, the finite-element model established in previous work was used to analyze the effect of various forming parameters, which included the reduction in area, the semi-die angle, the aspect ratio, the inter-particle spacing and orientation angle of the fine Si particle in drawing processes. The finite-element results gave the consolidation condition. From the results of analysis, the effects of each forming parameter were determined. It is possible to obtain the Important basic data which can be guaranteed in the fracture prevention of $Al-1\%Si$ wire by using FE-Simulation.

  • PDF

Rear Surface Passivation of Silicon Solar Cell with AlON Layer by Reactive Magnetron Sputtering

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Kim, Kyung-Hoon;Kim, Sung-Min;Kim, Dong-Hwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.430-430
    • /
    • 2012
  • The surface recombination velocity of the silicon solar cell could be reduced by passivation with insulating layers such as $SiO_2$, SiNx, $Al_2O_3$, a-Si. Especially, the aluminium oxide has advantages over other materials at rear surface, because negative fixed charge via Al vacancy has an additional back surface field effect (BSF). It can increase the lifetime of the hole carrier in p-type silicon. The aluminium oxide thin film layer is usually deposited by atomic layer deposition (ALD) technique, which is expensive and has low deposition rate. In this study, ICP-assisted reactive magnetron sputtering technique was adopted to overcome drawbacks of ALD technique. In addition, it has been known that by annealing aluminium oxide layer in nitrogen atmosphere, the negative fixed charge effect could be further improved. By using ICP-assisted reactive magnetron sputtering technique, oxygen to nitrogen ratio could be precisely controlled. Fabricated aluminium oxy-nitride (AlON) layer on silicon wafers were analyzed by x-ray photoelectron spectroscopy (XPS) to investigate the atomic concentration ratio and chemical states. The electrical properties of Al/($Al_2O_3$ or $SiO_2/Al_2O_3$)/Si (MIS) devices were characterized by the C-V measurement technique using HP 4284A. The detailed characteristics of the AlON passivation layer will be shown and discussed.

  • PDF

The Research on Aluminum and Silcon Nanoparticles as Anode Materials for Lithium Ion Batteries (알루미늄 실리콘 나노분말을 이용한 리튬이온전지 음극재료에 관한 연구)

  • Kim, Hyeong-Jo;Tulugan, Kelimu;Kim, Hyung-Jin;Park, Won-Jo
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.110-115
    • /
    • 2013
  • The electrochemical performance and microstructure of Al-Si, Al-Si/C was investigated as anode for lithium ion battery. The Al-Si nano composite with 5 : 1 at% ratio was prepared by arc-discharge nano powder process. However, some of problem is occurred, when Al nano composite was synthesized by this manufacturing. The oxidation film is generated around Al-Si particles for passivating processing in the manufacture. The oxidation film interrupts electrical chemistry reaction during lithium ion insertion/extraction for charge and discharge. Because of the existence the oxidation film, Al-Si first cycle capacity is very lower than other examples. Therefore, carbon synthsized by glucose ($C_6H_{12}O_6$) was conducted to remove the oxidation film covered on the composite. The results showed that the first discharge cycle capacity of Al-Si/C is improved to 113mAh/g comparing with Al-Si (18.6mAh/g). Furthermore, XRD data and TEM images indicate that $Al_4C_3$ crystalline exist in Al-Si/C composite. In addition the Si-Al anode material, in which silicon is more contained was tested by same method as above, it was investigated to check the anode capacity and morphology properties in accordance with changing content of silicon, Si-Al anode has much higher initial discharge capacity(about 500mAh/g) than anode materials based on Aluminum as well as the morphology properties is also very different with the anode based Aluminum.