• Title/Summary/Keyword: Si(111)

Search Result 818, Processing Time 0.024 seconds

Growth and structure of $CeO_2$ films by oxygen-plasma-assisted molecular beam epitaxy (산소 플라즈마에서의 분자살 적층성장에 의한 $CeO_2$ 박막의 성장과 구조)

  • ;S.A. Chambers
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.16-23
    • /
    • 2000
  • The epitaxial growth of $CeO_2$ films has been investigated on three different substrates-Si(111), $SrTiO_3$(001), and MgO(001)-over wide range of growth parameters using oxygen-plasma-assisted molecular beam epitaxy. Pure-phase, single-crystalline epitaxial films of $CeO_2$ (001) have been grown only on $SrTiO_3$(001). We discuss the growth conditions in conjunction with the choice of substrates required to synthe-size this oxide, as well as the associated characterization by menas of x-ray diffraction, reflection high-energy electron diffraction, low-energy electron diffraction, and x-ray photoelectron spectroscopy and diffraction. Successful growth of single crystalline $CeO_2$ depends critically on the choice of substrate and is rather insensitive to the growth conditions studied in this investigation. $CeO_2$(001) films on $SrTiO_3$exhibit the sturcture of bulk $CeO_2$ without surface reconstructions. Ti outdiffusion is observed on the films grown temperatures above $650^{\circ}C$.

  • PDF

Preferred orientation of TiN thin films produced by Ion Beam Assist Deposition

  • Won, J.Y.;Kim, J.H.;Kang, H.J.;Baeg, C.H.;Park, S.Y.;Hong, J.W.;Wey, M.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.154-159
    • /
    • 1997
  • The crystal structure properties of TiN thin films deposited on SKD61 steel and Si(100) substrates by Ion Beam Assisted Deposition have been studied to clarify the thin film growth mechanism by using XRD, RBS, SEM, and AFM. The preferred orientation of TiN thin films changes from (111) to (100) as increasing the assisted energy. This tendency is independent of the substrate structure. The TiN thin film grow with (100) direction having surface free energy minimum as the assisted energy increases.

  • PDF

Atom-by-Atom Creation and Evaluation of Composite Nanomaterials at RT based on AFM

  • Morita, Seizo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.73-75
    • /
    • 2013
  • Atomic force microscopy (AFM) [1] can now not only image individual atoms but also construct atom letters using atom manipulation method [2]. Therefore, the AFM is the second generation atomic tool following the well-known scanning tunneling microscopy (STM). The AFM, however, has the advantages that it can image even insulating surfaces with atomic resolution and also measure the atomic force itself between the tip-apex outermost atom and the sample surface atom. Noting these advantages, we have been developing a novel bottom-up nanostructuring system, as shown in Fig. 1, based on the AFM. It can identify chemical species of individual atoms [3] and then manipulate selected atom species to the designed site one-by-one [2] to assemble complex nanostructures consisted of many atom species at room temperature (RT). In this invited talk, we will introduce our results toward atom-by-atom assembly of composite nanomaterials based on the AFM at RT. To identify chemical species, we developed the site-specific force spectroscopy at RT by compensating the thermal drift using the atom tracking. By converting the precise site-specific frequency shift curves, we obtained short-range force curves of selected Sn and Si atoms as shown in Fig. 2(a) and 2(b) [4]. Then using the atom-by-atom force spectroscopy at RT, we succeeded in chemical identification of intermixed three atom species in Pb/Sn/Si(111)-(${\surd}3$'${\surd}3$) surface as shown in Fig. 2(c) [3]. To create composite nanostructures, we found the lateral atom interchange phenomenon at RT, which enables us to exchange embedded heterogeneous atoms [2]. By combining this phenomenon with the modified vector scan, we constructed the atom letters "Sn" consisted of substitutional Sn adatoms embedded in Ge adatoms at RT as shown in Fig. 3(a)~(f) [2]. Besides, we found another kind of atom interchange phenomenon at RT that is the vertical atom interchange phenomenon, which directly interchanges the surface selected Sn atoms with the tip apex Si atoms [5]. This method is an advanced interchangeable single atom pen at RT. Then using this method, we created the atom letters "Si" consisted of substituted Si adatoms embedded in Sn adatoms at RT as shown in Fig. 4(a)~(f) [5]. In addition to the above results, we will introduce the simultaneous evaluation of the force and current at the atomic scale using the combined AFM/STM at RT.

  • PDF

CHARACTERISTICS OF HETEROEPITAXIALLY GROWN $Y_2$O$_3$ FILMS BY r-ICB FOR VLSI

  • Choi, S.C.;Cho, M.H.;Whangbo, S.W.;Kim, M.S.;Whang, C.N.;Kang, S.B.;Lee, S.I.;Lee, M.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.809-815
    • /
    • 1996
  • $Y_2O_3$-based metal-insulator-semiconductor (MIS) structure on p-Si(100) has been studied. Films were prepared by UHV reactive ionized cluster beam deposition (r-ICBD) system. The base pressure of the system was about $1 \times 10^{-9}$ -9/ Torr and the process pressure $2 \times 10^{-5}$ Torr in oxygen ambience. Glancing X-ray diffraction(GXRD) and in-situ reflection high energy electron diffracton(RHEED) analyses were performed to investigate the crystallinity of the films. The results show phase change from amorphous state to crystalline one with increasingqr acceleration voltage and substrate temperature. It is also found that the phase transformation from $Y_2O_3$(111)//Si(100) to $Y_2O_3$(110)//Si(100) in growing directions takes place between $500^{\circ}C$ and $700^{\circ}C$. Especially as acceleration voltage is increased, preferentially oriented crystallinity was increased. Finally under the condition of above substrate temperature $700^{\circ}C$ and acceleration voltage 5kV, the $Y_2O_3$films are found to be grown epitaxially in direction of $Y_2O_3$(1l0)//Si(100) by observation of transmission electron microscope(TEM). Capacitance-voltage and current-voltage measurements were conducted to characterize Al/$Y_2O_3$/Si MIS structure with varying acceleration voltage and substrate temperature. Deposited $Y_2O_3$ films of thickness of nearly 300$\AA$ show that the breakdown field increases to 7~8MV /cm at the same conditon of epitaxial growing. These results also coincide with XPS spectra which indicate better stoichiometric characteristic in the condition of better crystalline one. After oxidation the breakdown field increases to 13MV /cm because the MIS structure contains interface silicon oxide of about 30$\AA$. In this case the dielectric constant of only $Y_2O_3$ layer is found to be $\in$15.6. These results have demonstrated the potential of using yttrium oxide for future VLSI/ULSI gate insulator applications.

  • PDF

Effect of sputtering conditions on the exchange bias and giant magnetoresistance in Si/Ta/NiFe/CoFe/Cu/CoFe/FeMn/Ta spin valves (스파터링 조건이 FeMn계 top 스핀 밸브의 exchange bias 및 자기적 특성에 미치는 영향)

  • Kim, K.Y.;Shin, K.S.;Han, S.H.;Lim, S.H.;Kim, H.J.;Jang, S.H.;Kang, T.
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.67-73
    • /
    • 2000
  • Top spin valve samples with a structure Ta/NiFe/CoFe/Cu/CoFe/FeMn/Ta were deposited on a Si(100) substrate by changing d.c. magnetron sputtering conditions and the exchange-bias and magnetic properties of samples were investigated. The Exchange field, H$\_$ex/ increased with increase of sputtering power of FeMn from 30 to 150 W and CoFe from 30 to 100 W deposited on the Cu, the increase of H$\_$ex/ was found due to the improvement of preferred orientation of (111) FeMn phase from XRD results. In the case of Cu, H$\_$ex/ decreased with the increase of sputtering pressure ranging from 1 to 5 mTorr. The relationship between exchange field and resistance was investigated, spin valve samples with a large exchange field showed the lower resistance, which was strongly dependent on the good crystallinity and grain size increase as well as lower scattering effects. The Cu thickness was changed from 22 to 38 $\AA$ for Si/Ta/NiFe/CoFe/Cu(t), 30 W/CoFe, 100 W/FeMn, 100 W/Ta spin valve structures, MR ratio of 6.5 % and exchange field of about 190 Oe were obtained for the sample with Cu of 22 $\AA$ thickness. The increase of exchange field with decrease of Cu thickness was explained by FM/AFM spin-spin interaction.

  • PDF

Electrical Loss Reduction in Crystalline Silicon Photovoltaic Module Assembly: A Review

  • Chowdhury, Sanchari;Kumar, Mallem;Ju, Minkyu;Kim, Youngkuk;Han, Chang-Soon;Park, Jinshu;Kim, Jaimin;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.111-120
    • /
    • 2019
  • The output power of a crystalline silicon (c-Si) photovoltaic (PV) module is not directly the sum of the powers of its unit cells. There are several losses and gain mechanisms that reduce the total output power when solar cells are encapsulated into solar modules. Theses factors are getting high attention as the high cell efficiency achievement become more complex and expensive. More research works are involved to minimize the "cell-to-module" (CTM) loss. Our paper is aimed to focus on electrical losses due to interconnection and mismatch loss at PV modules. Research study shows that among all reasons of PV module failure 40.7% fails at interconnection. The mismatch loss in modern PV modules is very low (nearly 0.1%) but still lacks in the approach that determines all the contributing factors in mismatch loss. This review paper is related to study of interconnection loss technologies and key factors contributing to mismatch loss during module fabrication. Also, the improved interconnection technologies, understanding the approaches to mitigate the mismatch loss factors are precisely described here. This research study will give the approach of mitigating the loss and enable improvement in reliability of PV modules.

Reproductive Toxicity Study of CONP01, a New Antiarthritic Agent: Developmental Study in Rats (새로운 관절염 치료제 CONP01의 생식독성연구: 랫드 배 · 태자 발생시험)

  • Lee June-Suk;Hong Dong Ho;Kim Kwang-Ho;Zhang Hu-Song;Gil Gi Hyun;Han Myong Kyu;Yang Hyun Ju;Bae Jin-Sook;Kim Nam Du;Song Si Whan
    • Toxicological Research
    • /
    • v.21 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • A developmental study of CONP01, a new antiarthritic agent, was conducted in Sprague-Dawley rats. Dosage of CONP01 0, 111, 333, and 1000 mg/kg/day were administered to dams orally from day 6 to day 16 of gestation. Two-third of dams per group were subjected to caesarean section on day day 20 of pregnancy for examination of their fetuses, and the remaining one-third of dams per group were allowed to deliver naturally for postnatal examination of their offspring. There was no change in the dams body weights, food consumptions, specific clinical sings and gross findings. There was significant decrease only in the absolute and relative weights of right ovary in 111 mg/kg treatment group, when compared with the vehicle control, whereas other organ weights were not changed. Moreover, no increase in the frequencies of external, visceral and skeletal malformation of fetuses were observed in the treated groups. These results suggest that the oral NOAEL (no observed adverse effect level) of CONP01 may be over 1,000 mg/kg in dams and fetuses of rats.

Crystallographic Effects of Anode on the Mechanical Properties of Electrochemically Deposited Copper Films (아노드의 결정성에 따른 전기도금 구리박막의 기계적 특성 연구)

  • Kang, Byung-Hak;Park, Jieun;Park, Kangju;Yoo, Dayoung;Lee, Dajeong;Lee, Dongyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.714-720
    • /
    • 2016
  • We performed this study to understand the effect of a single-crystalline anode on the mechanical properties of as-deposited films during electrochemical deposition. We used a (111) single- crystalline Cu plate as an anode, and Si substrates with Cr/Au conductive seed layers were prepared for the cathode. Electrodeposition was performed with a standard 3-electrode system in copper sulfate electrolyte. Interestingly, the grain boundaries of the as-deposited Cu thin films using single-crystalline Cu anode were not distinct; this is in contrast to the easily recognizable grain boundaries of the Cu thin films that were formed using a poly-crystalline Cu anode. Tensile testing was performed to obtain the mechanical properties of the Cu thin films. Ultimate tensile strength and elongation to failure of the Cu thin films fabricated using the (111) single-crystalline Cu anode were found to have increased by approximately 52 % and 37 %, respectively, compared with those values of the Cu thin films fabricated using apoly-crystalline Cu anode. We applied ultrasonic irradiation during electrodeposition to disturb the uniform stream; we then observed no single-crystalline anode effect. Consequently, it is presumed that the single-crystalline Cu anode can induce a directional/uniform stream of ions in the electrolyte that can create films with smeared grain boundaries, which boundaries strongly affect the mechanical properties of the electrodeposited Cu films.

GIS-Based Spatial Statistical Analysis of Risk Areas for Liver Flukes in Surin Province of Thailand

  • Rujirakul, Ratana;Ueng-arporn, Naporn;Kaewpitoon, Soraya;Loyd, Ryan J;Kaewthani, Sarochinee;Kaewpitoon, Natthawut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2323-2326
    • /
    • 2015
  • It is urgently necessary to be aware of the distribution and risk areas of liver fluke, Opisthorchis viverrini, for proper allocation of prevention and control measures. This study aimed to investigate the human behavior, and environmental factors influencing the distribution in Surin Province of Thailand, and to build a model using stepwise multiple regression analysis with a geographic information system (GIS) on environment and climate data. The relationship between the human behavior, attitudes (<50%; $X_{111}$), environmental factors like population density ($148-169pop/km^2$; $X_{73}$), and land use as wetland ($X_{64}$), were correlated with the liver fluke disease distribution at 0.000, 0.034, and 0.006 levels, respectively. Multiple regression analysis, by equations OV= -0.599 + 0.005(population density ($148-169pop/km^2$); $X_{73}$) + 0.040 (human attitude (<50%); $X_{111}$) +0.022 (land used (wetland; X64), was used to predict the distribution of liver fluke. OV is the patients of liver fluke infection, R Square= 0.878, and, Adjust R Square= 0.849. By GIS analysis, we found Si Narong, Sangkha, Phanom Dong Rak, Mueang Surin, Non Narai, Samrong Thap, Chumphon Buri, and Rattanaburi to have the highest distributions in Surin province. In conclusion, the combination of GIS and statistical analysis can help simulate the spatial distribution and risk areas of liver fluke, and thus may be an important tool for future planning of prevention and control measures.

A High-Resolution Transmission Electron Microscopy Study of the Grain Growth of the Crystalline Silicon in Amorphous Silicon Thin Films (비정질 실리콘 박막에서 결정상 실리콘의 입자성장에 관한 고분해능 투과전자현미경에 의한 연구)

  • 김진혁;이정용;남기수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.7
    • /
    • pp.85-94
    • /
    • 1994
  • A high-resolution transmission electron microscopy study of the solid phase crystallization of the amorphous silicon thin films, deposited on SiOS12T at 52$0^{\circ}C$ by low pressure chemical vapor deposition and annealed at 55$0^{\circ}C$ in a dry N$_{2}$ ambient was carried out so that the arrangement of atoms in the crystalline silicon and at the amorphous/crystalline interface of the growing grains could be understood on an atomic level. Results show that circular crystalline silicon nuclei have formed and then the grains grow to an elliptical or dendritic shape. In the interior of all the grains many twins whose{111} coherent boundaries are parallel to the long axes of the grains are observed. From this result, it is concluded that the twins enhance the preferential grain growth in the <112> direction along {111} twin planes. In addition to the twins. many defect such as intrinsic stacking faults, extrinsic stacking faults, and Shockley partial dislocations, which can be formed by the errors in the stacking sequence or by the dissociation of the perfect dislocation are found in the silicon grain. But neither frank partial dislocations which can be formed by the condensation of excess silicon atoms or vacancies and can form stacking fault nor perfect dislocations which can be formed by the plastic deformation are observed. So it is concluded that most defects in the silicon grain are formed by the errors in the stacking sequence during the crystallization process of the amorphous silicon thin films.

  • PDF