• Title/Summary/Keyword: Shrinkage Cavity

Search Result 80, Processing Time 0.023 seconds

Effect of the Artificial Shrinkage on the Development of the Vitrified Bovine Embryos

  • Ha, A-Na;Cho, Su-Jin;Deb, Gautam-Kumar;Bang, Jae-Il;Kwon, Tae-Hyeon;Choi, Byeong-Hyun;Kong, Il-Keun
    • Journal of Embryo Transfer
    • /
    • v.25 no.1
    • /
    • pp.9-14
    • /
    • 2010
  • This study was conducted to find out the effects of artificial shrinkage (AS) on post-thaw development of bovine embryos. The blastocoelic cavity of blastocyst was punctured to remove its fluid contents and then incubated in the holding medium (HM) for 10 min. The punctured and non-punctured (control) blastocysts were equilibrated in vitrification solution 1 (VS1; TCM-199+20% FBS+10% EG) for 5 min and vitrification solution 2 (VS2; TCM199+20% FBS+35% EG+5% PVP+0.5 M Sucrose) for 1 min and vitrified by direct dropping into the liquid nitrogen. Vitrified blastocysts (punctured and control) were thawed and cultured in vitro (12 hr) for studying survival and hatching rates. The levels of shrinkage were measured by the volume of the blastocyst during equilibration in VS1 (at 1, 3 and 5 min of equilibration) and VS2 (at 30 and 60 sec of equilibration) that was considering the volume of non-punctured blastocyst in HM as 100%. The levels of shrinkage were higher in punctured group (62.4, 64.6, 64.3% at 1, 3 and 5 min in VS1; 50.6 and 52.7% at 30 and 60 sec in VS2) than control group (84.8, 86.6, 86.4% at 1, 3 and 5 min in VS1; 72.1 and 68.8% at 30 and 60 sec in VS2), but within each group the levels of shrinkage were similar. The survival (90.9%) and hatching (50.0%) rates of vitrified blastocysts at 12 hr post-thaw were higher in punctured group than that in control group (76.9% and 0.0% respectively). We confirmed that vitrification solutions (VS1 and VS2) have no toxic effect on the survival of blastocysts because the survival rates of blastocysts exposed to VS1 and VS2 for 24 hr were similar between punctured and control groups (94.3 vs. 96.0%; p>0.05). In conclusion, the preliminary data show that AS of blastocyst may improve survival and hatching rate after thawing.

POLYMERIZATION SHRINKAGE, HYGROSCOPIC EXPANSION AND MICROLEAKAGE OF RESIN-BASED TEMPORARY FILLING MATERIALS (레진계 임시수복재의 중합수축, 수화팽창과 미세누출)

  • Cho, Nak-Yeon;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.115-124
    • /
    • 2008
  • The purpose of this study was to measure the polymerization shrinkage and hygroscopic expansion of resin-based temporary filling materials and to evaluate microleakage at the interface between the materials and cavity wall. Five resin-based temporary filing materials were investigated: Fermit (Vivadent), Quicks (Dentkist), Provifil (Promedica), Spacer (Vericom), Clip (Voco). Caviton (GC) was also included for comparison. Polymerization shrinkage of five resin-based temporary filling materials was measured using the bonded disc method. For the measurement of hygroscopic expansion, the discs of six cured temporary filling materials were immersed in saline and a LVDT displacement sensor was used to measure the expansion for 7 days. For estimating of microleakage, Class I cavities were prepared on 120 extracted human molars and randomly assigned to 6 groups of 20 each. The cavities in each group were filled with six temporary filling materials. All specimens were submitted to 1000 thermocycles, with temperature varying from $5^{\circ}C/55^{\circ}C$. Microleakage was determined using a dye penetration test. The results were as follows: 1. Fermit had significantly less polymerization shrinkage than the other resin-based temporary fill ing materials. Fermit (0.22%) < Spacer (0.38%) < Quicks (0.64%), Provifil (0.67%), Clip (0.67%) 2. Resin-based temporary filling materials showed 0.43-1.1% expansion in 7 days. 3. Fermit showed the greatest leakage, while Quicks exhibited the least leakage. 4. There are no correlation between polymerization shrinkage or hygroscopic expansion and microleakage of resin-based temporary filling materials.

A Study on The Thickness Shrinkage of Injection Molded Parts with The Variation of Injection Mold Core and Molding Materials (사출금형코어 및 성형수지 변화에 따른 두께 방향 수축률에 관한 연구)

  • Shin, Sung-Hyun;Jeong, Eui-Chul;Kim, Mi-Ae;Chae, Bo-Hye;Son, Jung-Eon;Kim, Sang-Yoon;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.17-21
    • /
    • 2019
  • In this study, selective laser sintered 3D printing mold core and metal core were used to investigate the difference of the thickness shrinkage from the gate of the injection molded part at a constant interval. SLS 3D printing mold core was made of nylon-based PA2200 powder and the metal core was manufactured by conventional machining method. As the PA2200 powder material has low strength, thermal conductivity and high specific heat characteristics compared with metal, molding conditions were set with the consideration of molten temperature and injection pressure. Crystalline resin(PP) and amorphous resin(PS) with low melting temperature and viscosity were selected for the injection molding experiment. Cooling time for processing condition was selected by checking the temperature change of the cores with a cavity temperature sensor. The cooling time of the 3D printing core was required a longer time than that of the metal core. The thickness shrinkage of the molded part compared to the core depth was measured from the gate by a constant interval. It was shown that the thickness shrinkage of the 3D printing core was 2.02 ~ 4.34% larger than that of metal core. In additions, in the case of metal core, thickness shrinkage was increased with distance from the gate, on the contrary, in the case of polymer core showed reversed aspect.

Bulk-fill 복합레진, 믿고 사용해도 될까?

  • Koh, Kyeol;Park, Jeong-Won
    • The Journal of the Korean dental association
    • /
    • v.57 no.3
    • /
    • pp.162-168
    • /
    • 2019
  • Composite resin restorations in posterior teeth are increasing due to the aesthetic needs of patients and the development of materials. This trend will accelerate in line with domestic insurance policies. However, resin composites generate stresses due to their contraction during the polymerization process. To reduce the polymerization shrinkage stress of resin composites, incremental layering technique has been recommended for decades. This technique reduces stress at the cavity wall interface and allows a more efficient light curing of the material. Bulk-fill resin composites have been designed to simplify the restorative technique because they can be placed into cavities in a single increment of 4-5mm. The simplification of the operative procedures is desirable in clinical daily practice. In this context, bulk-fill resin composites are an attractive alternative for posterior restorations. However, a clearer understanding of the clinical performance of this relatively new class of materials in comparison to conventional resin composites is required. Based on previous studies, the aim of the current review was to present the clinical criteria for the use of bulk-fill composites in direct restorations of posterior teeth.

  • PDF

Effect of artificial shrinkage on clinical outcome in fresh blastocyst transfer cycles

  • Hur, Yong-Soo;Park, Jeong-Hyun;Ryu, Eun-Kyung;Yoon, Hae-Jin;Yoon, San-Hyun;Hur, Chang-Young;Lee, Won-Don;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.2
    • /
    • pp.87-92
    • /
    • 2011
  • Objective: This study aimed to determine the safety and clinical effect of artificial shrinkage (AS) in terms of assisted hatching of fresh blastocysts. Also, we evaluated the correlation between patient age and the effect of AS on clinical outcome. Methods: Two AS methods, using a 29-gauge needle and laser pulse, were compared. Seventy-three blastocysts were shrunk using a 29-gauge needle and the same number of other blastocysts were shrunk by a laser pulse. We evaluated the shrunken blastocysts hourly and considered them viable if they re-expanded >70%. Blastocyst transfer cycles (n=134) were divided into two groups: a control group consisted of the cycles whose intact embryos were transferred (n=100), while the AS group consisted of the cycles whose embryos were replaced following AS (n=34). The implantation and pregnancy rates of the control group and AS group were compared ($p$ <0.05). Results: The re-expansion rates of the 29-gauge needle and laser pulse AS groups were similar (56 [76.7%] vs. 62 [84.9%], respectively). All of the remaining shrunken blastocysts were re-expanded within 2 hours. There was no degeneration of shrunken blastocysts. The total and clinical pregnancy rate of the AS group (23 [67.6%]; 20 [58.8%], respectively) was significantly higher than that of the control group (47 [47.0%]; 39 [39.0%], respectively). In the older patient group, there was no difference in the clinical outcomes between the AS and control groups. Conclusion: These results suggest that AS of blastocoele cavity, followed by the transfer, would be a useful approach to improve the clinical outcome in cycles in which fresh blastocyst stage embryos are transferred.

Effects of Processing Variables on the Gas Penetrated Part of Gas-Assisted Injection Molding (가스사출성형인자가 가스사출성형품의 중공부 형성에 미치는 영향)

  • Han Seong Ryul;Park Tae Won;Jeong Yeong Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.144-150
    • /
    • 2005
  • Gas-assisted injection molding (GAIM) process is reducing the injection pressure during mold filling required as well as the shrinkage and warpage of the part and cycle time. Despite of these advantages, this process introduces new parameters and makes the application more difficult because the process interacts between gas and melt during injection molding process. Important GAIM factors that involved in this process include gas penetration design, locations of gas injection points, shot size, gas injection delay time as well as common injection molding parameters, gas pressure and gas injection time. In this study, the experiments were conducted to investigate effects of GAIM process variables on the gas penetration for PP and ABS moldings by changing gas injection point. Taguchi method was used fer the design of experiment. When the gas was injected at cavity's center, the most effective factor was shot size. When the gas was injected at cavity's end, the most effective factor was melt temperature. Injection speed was also an effective factor in GAIM process.

Prediction and Measurement of Residual Stresses in Injection Molded Parts

  • Kwon, Young-Il;Kang, Tae-Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.2 no.4
    • /
    • pp.203-211
    • /
    • 2001
  • Residual stresses were predicted by a flow analysis in the mold cavity and residual stress distribution in the injection molded product was measured. Flow field was analyzed by the hybrid FEM/FDM method, using the Hele Shaw approximation. The Modified Cross model was used to determine the dependence of the viscosity on the temperature and the shear rate. The specific volume of the polymer melt which varies with the pressure and temperature fields was calculated by the Tait\`s state equation. Flow analysis results such as pressure, temperature, and the location of the liquid-solid interface were used as the input of the stress analysis. In order to calculate more accurate gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise direction was predicted in two cases, the free quenching, under the assumption that the shrinkage of the injection molded product occurs within the mold cavity and that the solid polymer is elastic. Effects of the initial flow rate, packing pressure, and mold temperature on the residual stress distribution was discussed. Experimental results were also obtained by the layer removal method for molded polypropylene.

  • PDF

Effects of Process Variables on the Gas Penetrated Part in Gas-Assisted Injection Molding

  • Han, Seong-Ryeol;Park, Tae-Won;Jeong, Yeong-Deug
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.8-11
    • /
    • 2006
  • Gas-assisted injection molding (GAIM) process reduces the required injection pressure during mold filling stage as well as the shrinkage and warpage of the part and cycle time. Despite of these advantages, this process needs new parameters and makes the application more difficult because gas and melt interact during the injection molding process. Important GAIM factors involved in this process are gas penetration design, locations of gas injection points, shot size, delay time to inject gas as well as common injection molding parameters. In this study, the experiments are conducted to investigate effects of GAIM process variables on the gas penetration for PP (Polypropylene) and ABS (Acrylonitrile Butadiene Styrene) moldings by changing the gas injection point. Taguchi method is used for the design of the experiments. When the gas is injected at a cavity's center, the most effective factor is the shot size. When the gas is injected at a cavity's end, the most effective factor is the melt temperature. The injection speed is also an effective factor in GAIM process.

The Basic Study on the Casting/Forging Technology of Aluminum Alloy (알루미늄 합금의 주조/단조 기술에 대한 기초연구)

  • 배원병;김영호;이영석;김맹수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.62-67
    • /
    • 1998
  • An experimental study has been carried out to investigate casting process parameters which influence on the microstructures of cast preforms in casting/forging process of aluminum alloy. In the casting process, pouring temperature, pouring time, mold temperature, mold material, and, cooling method are selected as process parameters. With the cast preform, a forging test has been performed to compare mechanical properties of final products between casting/forging process and forging process. From the experimental results, low mold temperature and water cooling method are favorable for obtaining minute microstructures of cast preforms. Casting defects included in cast preforms. such as pores and shrinkage cavity, are eliminated by the forging process. And comparing cast/forged products with conventionally forged products, the former are almost as same as the latter in mechanical characteristics.

  • PDF

Effects of Mold Temperature on the Weldline and Dimensional Stability of Injection-molded Parts (금형온도가 사출성형품의 웰드라인과 치수안정성에 미치는 영향에 관한 연구)

  • 김동학;이재원;김태완
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.172-176
    • /
    • 2003
  • In this paper, we studied the effects of mold temperature on the microstructure of injection molded parts. The weld line decreases in length and width as mold temperature increases. We investigated the dimensional stability of the parts made of two kinds of resin(polypropylene and polystyrene) by varying the mold temperature. As the mold temperature is high, both the shrinkage ratio and the thickness difference for the PS parts decreases. But the observation of PP parts shows a tendency to increase. The easiness of cavity filling and transcription of the mold texture is improved as the mold temperature is high.

  • PDF