• 제목/요약/키워드: Shot Peening

검색결과 186건 처리시간 0.024초

The Effect of Compressive Residual Stresses of Two-stage Shot Peening for Fatigue Strength of Spring Steel

  • Park, Keyoung Dong;Jung, Chang Gi;Kwon, Oh Heon
    • International Journal of Safety
    • /
    • 제1권1호
    • /
    • pp.24-27
    • /
    • 2002
  • Recently the steel parts used in automobiles are required to be used under high stress more than ever before due to the need of keeping the weight down. To achieve this requirement of the high strength steel, it must be necessary to decrease inclusion contents and surface defects as like decarburization, surface roughness etc. In this study, the surface conditions are measured to know the influence on fatigue properties by two cases of two-stage shot peening and single-stage shot peening. And for this study, three kinds of spring steel (JISG408l-SUP7, SAE 9254 and DIN 50CrV4) are shaped. This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotating bending fatigue test and it results from (1) decreasing the surface roughness (2) unchanging the surface hardness (3) increasing the compressive residual stress. Moreover, results also show fatigue failures originated at the inclusion near the surface, and this inclusion type is turned out to be an alumina of high hardness.

스프링강의 피로진전거동에 미치는 잔류응력의 영향 (A Study on The Effect of Residual Stress on Fatigue Propagation Behavior of Spring Steel)

  • 박경동;정찬기
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.366-372
    • /
    • 2002
  • Recently the steel parts used at automobiles are required to be used under high stress more than ever before in need of the weight down. To achieve this requirement of a high strength steel, it must be necessary to decrease inclusion content and surface deject as like decarburization, surface roughness etc.. In this study, the surface conditions are measured to know tile influence on fatigue properties by two cases of shot peening of two-stage shot peening and single-stage shot peening. And for this study, three kinds of spring steel (JISG4081-SUP7,SAE 9254, DIN 50CrV4, ) are made. This study shows the outstanding improvement of fatigue properties at tire case of two-stage shot peening in the rotary bending fatigue test and this is assumed to be from (1) Decreasing the surface roughness (2) Unchanging the surface hardness (3) Increasing the compressive residual stress But, results also show fatigue failures originated at inclusion near surface, and this inclusion type is turned out to be a alumina of high hardness.

  • PDF

쇼트피닝에 의한 기어강의 부식특성에 관한 연구 (A Study on the Corrosion Characteristics of Gear Steel by Shot Peening)

  • 강진식;김태형;윤종구;정성균;이승호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.216-221
    • /
    • 2001
  • The surface treatment technique to increase corrosion resistance is very important in mechanical components of structures. Therefore, this paper investigates the effects of shot peening on the corrosion resistance of SCM 420steel. The results show that the surface compressive residual stress largely increases, which cause the increase of corrosion resistance.

  • PDF

세이빙기어의 굽힘피로강도 평가에 관한 연구 (A Study on the Evaluation of Bending Fatigue Strength in Shaving Gears)

  • 류성기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권3호
    • /
    • pp.337-343
    • /
    • 2002
  • This study deals with evaluation of bending fatigue strength in shaving gears. The saying gears were manufactured by processes that are currently used in most gears manufacturing companies. The test gears are bobbed, then the tooth surface are treated by a combination of shaving, carburizing and shot peening. The constant stress amplitude fatigue test is performed by using an electro-hydraulic servo-controlled pulsating tester. The S-N curves are obtained and illustrated. In this study, the effect of shaving process and shot peening was investigated and evaluated quantitatively on the fatigue strength. The enhancement of fatigue strength due to shaving process and shot peening is clarified.

고장력강 SNCM8재의 표면처리에 따른 피로강도 변화 (A Study on Fatigue Strength Influence of Surface Treatment on High Strength Steel SNCM8)

  • 강신현;차정환;배성인
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.697-703
    • /
    • 1996
  • Fatigue strength of high strengthsteels are variable with many different surface treatment. It is well known that residual compressive stress retard fatigue crack growth rate(or arrest crack). High strngth steels are manufactured by following process. Heat treatment, shot peening and chromium plating process. High strength steel(HRC40 or above) which are subjected to fatigue load and dynamic load, chromium plated parts shall be peened in accordance with requirements and baked after plating. The purpose of this paper is to compare and discuss the influence of surface treatment and hydrogen embrittlement on fatigue strength of high strength steel. Therefore, fatigue test was performed to investigate influence of surface treatment. The results shows that shot peening is very effect method in creasing fatigue life and after plating, baking process is essential to prevent hydogen failure. In this paper, the experimental investigation is made to clarify the influence of shot peening conditions and baking process on fatigue strength of high strength steel.

  • PDF

균열 특성 개선을 위한 2단 쇼트피닝 가공 (2-Step Shot Peening Process for the Improvement of Fatigue Crack Growth Properties)

  • 이승호;심동석
    • 한국기계가공학회지
    • /
    • 제2권4호
    • /
    • pp.67-72
    • /
    • 2003
  • In this study, to investigate the effects of 2-step shot peening at the surface of spring steel, crack growth tests are conducted on spring steel and shot peened specimens. And then the residual stresses and fractographs are examined. The crack growth equation that can describe the whole crack growth behavior is used to evaluate the experiment results. The results show that fatigue crack glows slowly in the shot peened specimen than in the unpeened. And in the case of the 2-step shot peened specimen the initial stress intensity factor range and the fracture toughness is higher than the unpeened specimen due to the compressive residual stress. Fractographs show that the compressive residual stress of the surface suppress the fatigue crack opening and consequently slow crack growth rates.

  • PDF

균열진전에 대한 쇼트피닝 효과 (Effect of Shot-peening on Fatigue Crack Growth)

  • 심동석;이승호;이명호
    • 한국해양공학회지
    • /
    • 제18권6호
    • /
    • pp.91-95
    • /
    • 2004
  • In this study, to investigate the effects of shot peening on crack growth behavior, crack growth tests are conducted on spring steels and shot peened cracks. The probabilistic crack growth equation, which can represemt the sigmoidal crack growth behavior as recently reported by Kim and Shim, is used to evaluate the experimental results. The results show that fatigue cracks grows slower in the shot peened specimen than in the unpeened and, due to the compressive residual stress occurring on the specimen surface. In the case of the shot peened specimen, the initial stress intensity factor range and the fracture toughness is higher than the non-peened specimen because the compressive residual stress affects crack growth and fracture of the specimen.

항공기 구조용 재료의 쇼트피닝에 의한 압축 잔류응력의 분포 특성 (Distribution Characteristics of Residual Compressive Stresses Induced by Shot-peening in the Aircraft Structural Material)

  • 이환우;박영수
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.149-157
    • /
    • 2004
  • Residual stresses can have a significant influence on the fatigue lives of structural engineering components. For the accurate assessment of fatigue lifetimes a detailed knowledge of the residual stress profile is required. Significant advances have been made in recent years fur obtaining accurate and reliable determinations of residual stress distributions. These include both experimental and numerical methods. The purpose of this study is to simulate peening process with the help of the finite element method in order to predict the magnitude and distribution of the residual stresses in accordance with the parameters, which are, e.g. shot velocity, shot diameter, shot impact angle, shot shape, distance between two impinging shots, and material parameters.