Proceedings of the Korean Society of Broadcast Engineers Conference
/
2006.11a
/
pp.15-18
/
2006
비디오를 내용 별로 분할하기 위한 최소 단위는 비디오의 샷이다. 따라서 비디오 내용 정보를 분석함에 있어서 비디오의 샷 경계 검출은 필수적인 과정이다. 이러한 샷 전환 과정은 급격한 샷 전환 과정과 점진적인 샷 전환 과정으로 구분할 수 있다. 점진적인 샷 전환 과정의 경우 전환 과정이 여러 프레임들에 걸쳐 발생되는 관계로 점진적인 샷 전환 과정을 검출하기 위하여, 기존 샷 경계 검출 알고리즘은 일정 간격을 슬라이딩한 윈도우 프레임들 간의 차이를 비교하는 방식을 이용하였다. 기존 슬라이딩 윈도우 방법은 점전적인 샷 전환 과정을 검출하기 위하여 고정된 크기의 윈도우 하나만을 이용하였다. 이 경우, 슬라이딩 윈도우의 길이가 점진적인 샷 전환 과정에 비해 짧으면, 샷 전환을 검출하지 못 한다. 슬라이딩 윈도우의 길이가 샷의 길이보다 길면 샷을 점진적인 샷 전환으로 검출하는 오류가 발생된다. 상기 문제점을 개선하기 위하여 본 논문에서는 서로 다른 크기의 다수의 슬라이딩 윈도우들과 적응적 경계치를 적용한 샷 경계 검출 방법을 제안한다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.28
no.7C
/
pp.712-718
/
2003
C.elegans are often used to study of function of gene, but it is difficult for human observation to distinguish the mutants of C.elegans. To solve this problem, the system, which can classify the mutant types automatically using the computer vision, is now studying. Tn previous work[1], we described the preprocessing method for automated-classification system. In this paper, we introduce shape features, which can be extracted from an acquisition image. We divide the feature into two categories, which are related to size and posture of the worm, and each feature is described mathematically We validate the shape information experimentally. And we use hierarchical clustering algorithm for classification. It reveals that 4 mutants of the worm, which are used in experiment, can be classified with over 90% of success rate.
Journal of the Korea Society of Computer and Information
/
v.3
no.4
/
pp.27-34
/
1998
In this paper we present a method for automatic motion vector and brightness based video indexing and retrieval. We extract a representational frame from each shot and compute some motion vector and brightness based features. For each R-frame we compute the optical flow field; motion vector features are then derived from this flow field, BMA(block matching algorithm) is used to find motion vectors and Brightness features are related to the cut detection of method brightness histogram. A video database provided contents based access to video. This is achieved by organizing or indexing video data based on some set of features. In this paper the index of features is based on a B+ search tree. It consists of internal and leaf nodes stores in a direct access a storage device. This paper defines the problem of video indexing based on video data models.
To delve into the semantic gap problem of the automatic video summarization, we focused on an endogenous ERP responses at around 400ms and 600ms after the on-set of audio-visual stimulus. Our experiment included two factors: the topic exploration of experimental conditions (Topic Given vs. Topic Exploring) as a between-subject factor and the topic relevance of the shots (Topic-Relevant vs. Topic-Irrelevant) as a within-subject factor. For the Topic Given condition of 22 subjects, 6 short historical documentaries were shown with their video titles and written summaries, while in the Topic Exploring condition of 25 subjects, they were asked instead to explore topics of the same videos with no given information. EEG data were gathered while they were watching videos in real time. It was hypothesized that the cognitive activities to explore topics of videos while watching individual shots increase the amplitude of endogenous ERP at around 600 ms after the onset of topic relevant shots. The amplitude of endogenous ERP at around 400ms after the onset of topic-irrelevant shots was hypothesized to be lower in the Topic Given condition than that in the Topic Exploring condition. The repeated measure MANOVA test revealed that two hypotheses were acceptable.
In this study, the task of robotic tidy-up is to clean the current environment up exactly like a target image. To perform a tidy-up task using a robot, it is necessary to estimate the pose of various objects and to classify the objects. Pose estimation requires the CAD model of an object, but these models of most objects in daily life are not available. Therefore, this study proposes an algorithm that uses point cloud and PCA to estimate the pose of objects without the help of CAD models in cluttered environments. In addition, objects are usually detected using a deep learning-based object detection. However, this method has a limitation in that only the learned objects can be recognized, and it may take a long time to learn. This study proposes an image matching based on few-shot learning and Siamese network. It was shown from experiments that the proposed method can be effectively applied to the robotic tidy-up system, which showed a success rate of 85% in the tidy-up task.
For the first time in Korea, we are developing technology for gravitational wave (GW) detectors as a major R&D program. Our main research target is quantum noise reduction technology which can enhance the sensitivity of a GW detector beyond its limit by classical physics. Technology of generating squeezed vacuum state of light (SQZ) can suppress quantum noise (shot noise at higher frequencies and radiation pressure noise at lower frequencies) of laser interferometer type GW detectors. Squeezing technology has recently started being used for GW detectors and becoming necessary and key components. Our ultimate goal is to participate and make contribution to international collaborations for upgrade of existing GW detectors and construction of next generation GW detectors. This presentation will summarize our results in 2020 and plan for the upcoming years. Technical details will be presented in other family talks.
Yejee Kang;Li Fei;Yeonji Jang;Seoyoon Park;Hansaem Kim
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.499-504
/
2023
본 연구에서는 민감한 개인정보의 유출과 남용 위험이 높아지고 있는 상황에서 정확한 개인정보 탐지 및 비식별화의 효율을 높이기 위해 개인정보 항목에 특화된 개체명 체계를 개발하였다. 개인정보 태그셋이 주석된 대화 데이터 4,981세트를 구축하고, 생성 AI 모델을 활용하여 개인정보 개체명 탐지 실험을 수행하였다. 실험을 위해 최적의 프롬프트를 설계하여 퓨샷러닝(few-shot learning)을 통해 탐지 결과를 평가하였다. 구축한 데이터셋과 영어 기반의 개인정보 주석 데이터셋을 비교 분석한 결과 고유식별번호 항목에 대해 본 연구에서 구축한 데이터셋에서 더 높은 탐지 성능이 나타났으며, 이를 통해 데이터셋의 필요성과 우수성을 입증하였다.
In order to obtain high-quality high-resolution marine seismic data, the survey needs to be carried out at very low-sea condition. However, the survey is often performed with a slight wave, which degrades the quality of data. In this case, it is possible to improve the quality of seismic data by detecting the exact location of the sea bottom signal and eliminating the influence of waves or swells automatically during data processing. However, if noise is included or the sea bottom signal is weakened due to sea waves, sea bottom detection errors are likely to occur. In this study, we applied a method reducing such errors by estimating the sea bottom location, setting a narrow detection range and detecting the sea bottom location within this range. The expected location of the sea bottom was calculated using previously detected sea bottom locations for each channel of multi-channel data. The expected location calculated in each channel is also compared and verified with expected locations of other channels in a shot gather. As a result of applying this method to the noisy 8-channel high-resolution air-gun seismic data acquired off Yeosu, the errors in selecting the strong noise before sea bottom or the strong subsurface reflected signal after the sea bottom signal are remarkably reduced and it is possible to produce the high-quality seismic section with the correction of ~ 2.5 m swell effect.
This paper presents a real-time autonomous computation of shot numbers and aiming points against multiple soft targets on grounds by applying an unsupervised learning, k-mean clustering and Monte carlo simulation. For this computation, a 100 × 200 square meters size of virtual battlefield is created where an augmented enemy infantry platoon unit attacks, defences, and is scatted, and a virtual weapon with a lethal range of 15m is modeled. In order to determine damage types of the enemy unit: no damage, light wound, heavy wound and death, Monte carlo simulation is performed to apply the Carlton damage function for the damage effect of the soft targets. In addition, in order to achieve the damage effectiveness of the enemy units in line with the commander's intention, the optimal shot numbers and aiming point locations are calculated in less than 0.4 seconds by applying the k-mean clustering and repetitive Monte carlo simulation. It is hoped that this study will help to develop a system that reduces the decision time for 'detection-decision-shoot' process in battalion-scaled combat units operating Dronebot combat system.
While the broadband multimedia technologies have been developing, the commercial market of digital contents has also been widely spreading. Most of all, digital cartoon market like internet cartoon has been rapidly large so video cartooning continuously has been researched because of lack and variety of cartoon. Until now, video cartooning system has been focused in non-photorealistic rendering and word balloon. But the meaningful frame extraction must take priority for cartooning system when applying in service. In this paper, we propose new automatic frame extraction method for video cartooning system. At frist, we separate video and audio from movie and extract features parameter like MFCC and ZCR from audio data. Audio signal is classified to speech, music and speech+music comparing with already trained audio data using GMM distributor. So we can set speech area. In the video case, we extract frame using general scene change detection method like histogram method and extract meaningful frames in the cartoon using face detection among the already extracted frames. After that, first of all existent face within speech area image transition frame extract automatically. Suitable frame about movie cartooning automatically extract that extraction image transition frame at continuable period of time domain.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.